
Prove that:
$\dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}} = 1$
Answer
581.7k+ views
Hint: In this particular type of question use the concept that first convert the denominator of all the terms into standard format i.e. in (a – b), (b – c) and (c – a), then multiply and divide by appropriate values so that the denominator of all the terms become equal so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Given equation:
$\dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}} = 1$
Proof –
Consider the L.H.S part of the above equation we have,
$ \Rightarrow \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}}$
Now write denominator in the form of (a – b), (b – c) and (c – a) so we have,
$ \Rightarrow \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{ - \left( {a - b} \right)\left( {c - a} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{ - \left( {b - c} \right)\left( {a - b} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{ - \left( {c - a} \right)\left( {b - c} \right)}}$
Now in the above equation multiply and divide by (b – c) in the first term, (c – a) in the second term and (a – b) in the third term so we have,
$ \Rightarrow - \dfrac{{\left( {b - c} \right)\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{\left( {c - a} \right)\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{\left( {a - b} \right)\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now simplify the numerator we have,
$ \Rightarrow - \dfrac{{\left( {b - c} \right)\left( {{x^2} - bx - cx + bc} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{\left( {c - a} \right)\left( {{x^2} - cx - ax + ac} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{\left( {a - b} \right)\left( {{x^2} - ax - bx + ab} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
\[
\Rightarrow - \dfrac{{\left( {{x^2}b - {b^2}x - bcx + {b^2}c - {x^2}c + bcx + {c^2}x - b{c^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} \\
- \dfrac{{\left( {{x^2}c - {c^2}x - acx + a{c^2} - {x^2}a + acx + {a^2}x - {a^2}c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} \\
- \dfrac{{\left( {{x^2}a - {a^2}x - abx + {a^2}b - {x^2}b + abx + {b^2}x - a{b^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} \\
\]
Now cancel out the common terms from the numerator when we take the L.C.M we have,
\[ \Rightarrow \dfrac{{ - \left( {{b^2}c - b{c^2}} \right) - \left( {a{c^2} - {a^2}c} \right) - \left( {{a^2}b - a{b^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
Now expand the denominator we have,
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( {a - b} \right)\left( {bc - ba - {c^2} + ac} \right)}}\]
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( {abc - b{a^2} - a{c^2} + {a^2}c - {b^2}c + a{b^2} + b{c^2} - abc} \right)}}\]
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( { - b{a^2} - a{c^2} + {a^2}c - {b^2}c + a{b^2} + b{c^2}} \right)}}\]
Now arrange the denominator according to the numerator we have,
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( { - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}} \right)}}\]
So as we see that numerator and denominator is same so it all cancel out, so we have,
= 1
= R.H.S
Hence Proved.
Note: In such types of questions it is advised to simplify the LHS or the RHS according to their complexity of the given functions. Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar functions to get to the final result, and check whether R.H.S is equal to L.H.S or not if yes then it is the required answer.
Complete step-by-step answer:
Given equation:
$\dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}} = 1$
Proof –
Consider the L.H.S part of the above equation we have,
$ \Rightarrow \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {a - c} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {b - c} \right)\left( {b - a} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {c - a} \right)\left( {c - b} \right)}}$
Now write denominator in the form of (a – b), (b – c) and (c – a) so we have,
$ \Rightarrow \dfrac{{\left( {x - b} \right)\left( {x - c} \right)}}{{ - \left( {a - b} \right)\left( {c - a} \right)}} + \dfrac{{\left( {x - c} \right)\left( {x - a} \right)}}{{ - \left( {b - c} \right)\left( {a - b} \right)}} + \dfrac{{\left( {x - a} \right)\left( {x - b} \right)}}{{ - \left( {c - a} \right)\left( {b - c} \right)}}$
Now in the above equation multiply and divide by (b – c) in the first term, (c – a) in the second term and (a – b) in the third term so we have,
$ \Rightarrow - \dfrac{{\left( {b - c} \right)\left( {x - b} \right)\left( {x - c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{\left( {c - a} \right)\left( {x - c} \right)\left( {x - a} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{\left( {a - b} \right)\left( {x - a} \right)\left( {x - b} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
Now simplify the numerator we have,
$ \Rightarrow - \dfrac{{\left( {b - c} \right)\left( {{x^2} - bx - cx + bc} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{\left( {c - a} \right)\left( {{x^2} - cx - ax + ac} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} - \dfrac{{\left( {a - b} \right)\left( {{x^2} - ax - bx + ab} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}$
\[
\Rightarrow - \dfrac{{\left( {{x^2}b - {b^2}x - bcx + {b^2}c - {x^2}c + bcx + {c^2}x - b{c^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} \\
- \dfrac{{\left( {{x^2}c - {c^2}x - acx + a{c^2} - {x^2}a + acx + {a^2}x - {a^2}c} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} \\
- \dfrac{{\left( {{x^2}a - {a^2}x - abx + {a^2}b - {x^2}b + abx + {b^2}x - a{b^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}} \\
\]
Now cancel out the common terms from the numerator when we take the L.C.M we have,
\[ \Rightarrow \dfrac{{ - \left( {{b^2}c - b{c^2}} \right) - \left( {a{c^2} - {a^2}c} \right) - \left( {{a^2}b - a{b^2}} \right)}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( {a - b} \right)\left( {b - c} \right)\left( {c - a} \right)}}\]
Now expand the denominator we have,
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( {a - b} \right)\left( {bc - ba - {c^2} + ac} \right)}}\]
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( {abc - b{a^2} - a{c^2} + {a^2}c - {b^2}c + a{b^2} + b{c^2} - abc} \right)}}\]
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( { - b{a^2} - a{c^2} + {a^2}c - {b^2}c + a{b^2} + b{c^2}} \right)}}\]
Now arrange the denominator according to the numerator we have,
\[ \Rightarrow \dfrac{{ - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}}}{{\left( { - {b^2}c + b{c^2} - a{c^2} + {a^2}c - {a^2}b + a{b^2}} \right)}}\]
So as we see that numerator and denominator is same so it all cancel out, so we have,
= 1
= R.H.S
Hence Proved.
Note: In such types of questions it is advised to simplify the LHS or the RHS according to their complexity of the given functions. Sometimes proving LHS = RHS needs simplification on both sides of the equation. Remember to convert dissimilar functions to get to the final result, and check whether R.H.S is equal to L.H.S or not if yes then it is the required answer.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

