
Prove that $\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.$
Answer
540.9k+ views
Hint: The factorial of a natural number is defined as the product of all the natural numbers less than or equal to that number. That is the factorial of a natural number $n$ is the product of the natural numbers from $1$ to $n.$ So, $n!=1\cdot 2\cdot 3\cdot ...\cdot \left( n-1 \right)n.$
Complete step by step answer:
Consider the given problem $\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.$
We have already learnt that the factorial of a natural number is defined as the product of all the natural numbers less than or equal to that number.
Suppose we need to find the factorial of a natural number $n.$ So, we will get the identity $n!=1\cdot 2\cdot 3\cdot ...\cdot \left( n-1 \right)n.$
Let us consider the right-hand side of the given equation, $1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.$
Here, the product of the odd numbers from $1$ to $2n-1$ is multiplied to ${{2}^{n}}.$
Now, we need to make this a fraction in terms of factorials. In order to make this in terms of factorial we are going to multiply and divide it with the product $2\cdot 4\cdot 6\cdot ...\cdot 2n.$
So, we will get $1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}\dfrac{2\cdot 4\cdot 6\cdot ...\cdot 2n}{2\cdot 4\cdot 6\cdot ...\cdot 2n}.$
We know that $1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}\cdot 2\cdot 4\cdot ...\cdot 2n=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}.$
So, we will get $1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}=\dfrac{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}}{2\cdot 4\cdot ...\cdot 2n}.$
By the definition of the factorial, we will get the following $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n=2n!.$
Therefore, we will get the numerator of the above fraction in terms of factorial.
That is, $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!{{2}^{n}}}{2\cdot 4\cdot ...\cdot 2n}.$
Let us consider the denominator of the above fraction, $2\cdot 4\cdot ...\cdot 2n.$ Since all the terms are even, all of them have a common factor. That is, $2.$ If we are taking $2$ from each of these numbers, we will get $2\cdot 4\cdot 6\cdot ...\cdot 2n=2\cdot 2\cdot 2\cdot ...\cdot {{2}_{n times}}\cdot 1\cdot 2\cdot 3\cdot ...\cdot n.$
Thus, we will get $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!{{2}^{n}}}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n\cdot {{2}^{n}}}.$
Let us cancel the common factor from the numerator and the denominator to get $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n}.$
We have $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n=n!.$
Therefore, $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!}{n!}=\text{LHS}.$
Hence it is proved that $\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.$
Note: Remember that $0!=1.$ Also, note that \[\left( 2n \right)!\ne 2n!.\] We know that if we multiply a number multiple times, then that is equal to the number raised to the number of the times it is multiplied.
Complete step by step answer:
Consider the given problem $\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.$
We have already learnt that the factorial of a natural number is defined as the product of all the natural numbers less than or equal to that number.
Suppose we need to find the factorial of a natural number $n.$ So, we will get the identity $n!=1\cdot 2\cdot 3\cdot ...\cdot \left( n-1 \right)n.$
Let us consider the right-hand side of the given equation, $1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.$
Here, the product of the odd numbers from $1$ to $2n-1$ is multiplied to ${{2}^{n}}.$
Now, we need to make this a fraction in terms of factorials. In order to make this in terms of factorial we are going to multiply and divide it with the product $2\cdot 4\cdot 6\cdot ...\cdot 2n.$
So, we will get $1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}\dfrac{2\cdot 4\cdot 6\cdot ...\cdot 2n}{2\cdot 4\cdot 6\cdot ...\cdot 2n}.$
We know that $1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}\cdot 2\cdot 4\cdot ...\cdot 2n=1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}.$
So, we will get $1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}=\dfrac{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}}{2\cdot 4\cdot ...\cdot 2n}.$
By the definition of the factorial, we will get the following $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n=2n!.$
Therefore, we will get the numerator of the above fraction in terms of factorial.
That is, $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!{{2}^{n}}}{2\cdot 4\cdot ...\cdot 2n}.$
Let us consider the denominator of the above fraction, $2\cdot 4\cdot ...\cdot 2n.$ Since all the terms are even, all of them have a common factor. That is, $2.$ If we are taking $2$ from each of these numbers, we will get $2\cdot 4\cdot 6\cdot ...\cdot 2n=2\cdot 2\cdot 2\cdot ...\cdot {{2}_{n times}}\cdot 1\cdot 2\cdot 3\cdot ...\cdot n.$
Thus, we will get $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!{{2}^{n}}}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n\cdot {{2}^{n}}}.$
Let us cancel the common factor from the numerator and the denominator to get $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!}{1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n}.$
We have $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot n=n!.$
Therefore, $1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...\cdot 2n\cdot {{2}^{n}}=\dfrac{\left( 2n \right)!}{n!}=\text{LHS}.$
Hence it is proved that $\dfrac{\left( 2n \right)!}{n!}=1\cdot 3\cdot 5\cdot ...\cdot \left( 2n-1 \right){{2}^{n}}.$
Note: Remember that $0!=1.$ Also, note that \[\left( 2n \right)!\ne 2n!.\] We know that if we multiply a number multiple times, then that is equal to the number raised to the number of the times it is multiplied.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

