
Prove that \[\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}\]
Answer
465.3k+ views
Hint:The given question deals with proving trigonometric equality using the basic and simple trigonometric formulae and identities such as $\cos 2x = {\cos ^2}x - {\sin ^2}x$. So, we will first multiply the numerator and denominator of the left side of the result with $\cos x + \sin x$. Then, we will evaluate the whole square of $\cos x + \sin x$ in the denominator and will use the double angle formula for cosine in the numerator to get the required result.
Complete step by step answer:
Given, we have to prove \[\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}\]
We know, the formulas that,
\[\sin 2x = 2\sin x\cos x\]
\[\Rightarrow \cos 2x = {\cos ^2}x - {\sin ^2}x\]
\[\Rightarrow \tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\],
Using these basic identities and some other methods we can prove the given question.
At first multiplying \[\cos x + \sin x\]to both numerator and denominator of left hand side, we get
\[\dfrac{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}{{\left( {\cos x + \sin x} \right)\left( {\cos x + \sin x} \right)}}\]
Now, using the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]and \[\left( {a + b} \right)\left( {a + b} \right) = {\left( {a + b} \right)^2}\], we get
\[\dfrac{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}{{\left( {\cos x + \sin x} \right)\left( {\cos x + \sin x} \right)}}\]\[ = \dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\left( {\cos x + \sin x} \right)}^2}}}\]
Then using the formulas of double angle identities,
\[\cos 2x = {\cos ^2}x - {\sin ^2}x\], we get
\[\Rightarrow \dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\left( {\cos x + \sin x} \right)}^2}}} = \dfrac{{\cos 2x}}{{{{\left( {\cos x + \sin x} \right)}^2}}} \]
Now expanding the denominator in the formula of \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[\dfrac{{\cos 2x}}{{{{\cos }^2}x + 2\sin x\cos x + {{\sin }^2}x}}\]
We know that \[{\cos ^2}x\]\[ + {\sin ^2}x\]\[ = 1\], so using this formula, we get,
\[\dfrac{{\cos 2x}}{{1 + 2\sin x\cos x}}\]
Now from the formula of double angle identities, \[\sin 2x = 2\sin x\cos x\], we get
\[\dfrac{{\cos 2x}}{{1 + \sin 2x}}\]
Thus \[\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}\](proved).
Note:There are many forms of cosine double angle formulae such as $\cos 2x = {\cos ^2}x - {\sin ^2}x$, $\cos 2x = 2{\cos ^2}x - 1$, $\cos 2x = 1 - 2{\sin ^2}x$, $\cos 2x = \left( {\dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}} \right)$. Hence, it is very crucial to understand which formula should be applied in the given problem. Since, we get, ${\cos ^2}x - {\sin ^2}x$ in the numerator after multiplying and dividing the left side by $\cos x + \sin x$, hence we apply $\cos 2x = {\cos ^2}x - {\sin ^2}x$ to simplify the expression. We should also remember the double angle formula for sine as $\sin 2x = 2\sin x\cos x$ to solve the given problem.
Complete step by step answer:
Given, we have to prove \[\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}\]
We know, the formulas that,
\[\sin 2x = 2\sin x\cos x\]
\[\Rightarrow \cos 2x = {\cos ^2}x - {\sin ^2}x\]
\[\Rightarrow \tan 2x = \dfrac{{2\tan x}}{{1 - {{\tan }^2}x}}\],
Using these basic identities and some other methods we can prove the given question.
At first multiplying \[\cos x + \sin x\]to both numerator and denominator of left hand side, we get
\[\dfrac{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}{{\left( {\cos x + \sin x} \right)\left( {\cos x + \sin x} \right)}}\]
Now, using the formula \[\left( {a - b} \right)\left( {a + b} \right) = {a^2} - {b^2}\]and \[\left( {a + b} \right)\left( {a + b} \right) = {\left( {a + b} \right)^2}\], we get
\[\dfrac{{\left( {\cos x - \sin x} \right)\left( {\cos x + \sin x} \right)}}{{\left( {\cos x + \sin x} \right)\left( {\cos x + \sin x} \right)}}\]\[ = \dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\left( {\cos x + \sin x} \right)}^2}}}\]
Then using the formulas of double angle identities,
\[\cos 2x = {\cos ^2}x - {\sin ^2}x\], we get
\[\Rightarrow \dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\left( {\cos x + \sin x} \right)}^2}}} = \dfrac{{\cos 2x}}{{{{\left( {\cos x + \sin x} \right)}^2}}} \]
Now expanding the denominator in the formula of \[{\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}\], we get
\[\dfrac{{\cos 2x}}{{{{\cos }^2}x + 2\sin x\cos x + {{\sin }^2}x}}\]
We know that \[{\cos ^2}x\]\[ + {\sin ^2}x\]\[ = 1\], so using this formula, we get,
\[\dfrac{{\cos 2x}}{{1 + 2\sin x\cos x}}\]
Now from the formula of double angle identities, \[\sin 2x = 2\sin x\cos x\], we get
\[\dfrac{{\cos 2x}}{{1 + \sin 2x}}\]
Thus \[\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}\](proved).
Note:There are many forms of cosine double angle formulae such as $\cos 2x = {\cos ^2}x - {\sin ^2}x$, $\cos 2x = 2{\cos ^2}x - 1$, $\cos 2x = 1 - 2{\sin ^2}x$, $\cos 2x = \left( {\dfrac{{1 - {{\tan }^2}x}}{{1 + {{\tan }^2}x}}} \right)$. Hence, it is very crucial to understand which formula should be applied in the given problem. Since, we get, ${\cos ^2}x - {\sin ^2}x$ in the numerator after multiplying and dividing the left side by $\cos x + \sin x$, hence we apply $\cos 2x = {\cos ^2}x - {\sin ^2}x$ to simplify the expression. We should also remember the double angle formula for sine as $\sin 2x = 2\sin x\cos x$ to solve the given problem.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

