
Prove that $ \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 $
Answer
521.7k+ views
Hint: Here, to prove that $ \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 $ , we will take the LHS of the equation and try to bring it equal to RHS. Now,
$ \Rightarrow \cos ec\left( {90^\circ - x} \right) = \sec x $
$ \Rightarrow \sin \left( {180^\circ - x} \right) = \sin x $
$ \Rightarrow \cot \left( {360^\circ - x} \right) = - \cot x $
$ \Rightarrow \sec \left( {180^\circ + x} \right) = - \sec x $
$ \Rightarrow \tan \left( {90^\circ + x} \right) = - \cot x $
$ \Rightarrow \sin \left( { - x} \right) = - \sin x $
Substituting all these values in LHS, we will get LHS = RHS.
Complete step-by-step answer:
In this question, we have to prove that
$ \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 $ - - - - - - - - - - - - - - - - (1)
For proving this, let us take the LHS of the equation (1). Therefore,
$ \Rightarrow LHS = \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} $
Now, let us find the value of each term separately.
$ \cos ec\left( {90^\circ - x} \right) $ :
As we know, cosec and sec are complementary to each other, we have a relation between them that
$
\Rightarrow \cos ec\left( {90^\circ - x} \right) = \sec x \\
\Rightarrow \sec \left( {90^\circ - x} \right) = \cos ecx \;
$
Therefore, $ \cos ec\left( {90^\circ - x} \right) = \sec x $ - - - - - - (2)
$ \sin \left( {180^\circ - x} \right) $ :
As x is being subtracted from 180, $ \sin \left( {180^\circ - x} \right) $ lies between $ \pi $ and $ \dfrac{\pi }{2} $ that is the 2nd quadrant. And the sine and cosecant functions are positive in the 2nd quadrant. So, we get
$ \Rightarrow \sin \left( {180^\circ - x} \right) = \sin x $ - - - - - - (3)
$ \cot \left( {360^\circ - x} \right) $ :
As, x is being subtracted from 360, $ \cot \left( {360^\circ - x} \right) $ lies between $ 2\pi $ and $ \dfrac{{3\pi }}{2} $ that is 4th quadrant. And the cot function is negative in the 4th quadrant. So, we get
$ \Rightarrow \cot \left( {360^\circ - x} \right) = - \cot x $ - - - - - - (4)
$ \sec \left( {180^\circ + x} \right) $ :
As, we are adding x to 180, $ \sec \left( {180^\circ + x} \right) $ will lie between $ \pi $ and $ \dfrac{{3\pi }}{2} $ that is 3rd quadrant. And in the 3rd quadrant, sec is negative. So, we get
$ \Rightarrow \sec \left( {180^\circ + x} \right) = - \sec x $ - - - - - - (5)
$ \tan \left( {90^\circ + x} \right) $ :
Now, here as we are adding x into 90, $ \tan \left( {90^\circ + x} \right) $ will lie between $ \pi $ and $ \dfrac{\pi }{2} $ that is 2nd quadrant. And as the angle is $ \dfrac{\pi }{2} $ , we have to change the function from tan to cot. Here, cot will be negative in the 2nd quadrant. So, we get
$ \Rightarrow \tan \left( {90^\circ + x} \right) = - \cot x $ - - - - - - (6)
$ \sin \left( { - x} \right) $ :
Now, we have a relation that
$ \Rightarrow \sin \left( { - \theta } \right) = - \sin \theta $
Therefore,
$ \Rightarrow \sin \left( { - x} \right) = - \sin x $ - - - - - - (7)
So, now putting the values of equations (2), (3), (4), (5), (6), (7) in equation (1), we get
$ \Rightarrow LHS = \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} $
$
= \dfrac{{\sec x \cdot \sin x \cdot \left( { - \cot x} \right)}}{{ - \sec x \cdot \left( { - \cot x} \right) \cdot \left( { - \sin x} \right)}} \\
= \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}} \\
= 1 \;
$
Hence, LHS = RHS.
Therefore, we proved that $ \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 $ .
Note: Here, note that when the angle is made with X –Axis, we don’t change the trigonometric function and just change the sign according to the quadrant. But, when the angle is being made between X – Axis and Y – Axis, then we need to change the sign according to the quadrant and the trigonometric function as well.
$ \Rightarrow \cos ec\left( {90^\circ - x} \right) = \sec x $
$ \Rightarrow \sin \left( {180^\circ - x} \right) = \sin x $
$ \Rightarrow \cot \left( {360^\circ - x} \right) = - \cot x $
$ \Rightarrow \sec \left( {180^\circ + x} \right) = - \sec x $
$ \Rightarrow \tan \left( {90^\circ + x} \right) = - \cot x $
$ \Rightarrow \sin \left( { - x} \right) = - \sin x $
Substituting all these values in LHS, we will get LHS = RHS.
Complete step-by-step answer:
In this question, we have to prove that
$ \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 $ - - - - - - - - - - - - - - - - (1)
For proving this, let us take the LHS of the equation (1). Therefore,
$ \Rightarrow LHS = \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} $
Now, let us find the value of each term separately.
$ \cos ec\left( {90^\circ - x} \right) $ :
As we know, cosec and sec are complementary to each other, we have a relation between them that
$
\Rightarrow \cos ec\left( {90^\circ - x} \right) = \sec x \\
\Rightarrow \sec \left( {90^\circ - x} \right) = \cos ecx \;
$
Therefore, $ \cos ec\left( {90^\circ - x} \right) = \sec x $ - - - - - - (2)
$ \sin \left( {180^\circ - x} \right) $ :
As x is being subtracted from 180, $ \sin \left( {180^\circ - x} \right) $ lies between $ \pi $ and $ \dfrac{\pi }{2} $ that is the 2nd quadrant. And the sine and cosecant functions are positive in the 2nd quadrant. So, we get
$ \Rightarrow \sin \left( {180^\circ - x} \right) = \sin x $ - - - - - - (3)
$ \cot \left( {360^\circ - x} \right) $ :
As, x is being subtracted from 360, $ \cot \left( {360^\circ - x} \right) $ lies between $ 2\pi $ and $ \dfrac{{3\pi }}{2} $ that is 4th quadrant. And the cot function is negative in the 4th quadrant. So, we get
$ \Rightarrow \cot \left( {360^\circ - x} \right) = - \cot x $ - - - - - - (4)
$ \sec \left( {180^\circ + x} \right) $ :
As, we are adding x to 180, $ \sec \left( {180^\circ + x} \right) $ will lie between $ \pi $ and $ \dfrac{{3\pi }}{2} $ that is 3rd quadrant. And in the 3rd quadrant, sec is negative. So, we get
$ \Rightarrow \sec \left( {180^\circ + x} \right) = - \sec x $ - - - - - - (5)
$ \tan \left( {90^\circ + x} \right) $ :
Now, here as we are adding x into 90, $ \tan \left( {90^\circ + x} \right) $ will lie between $ \pi $ and $ \dfrac{\pi }{2} $ that is 2nd quadrant. And as the angle is $ \dfrac{\pi }{2} $ , we have to change the function from tan to cot. Here, cot will be negative in the 2nd quadrant. So, we get
$ \Rightarrow \tan \left( {90^\circ + x} \right) = - \cot x $ - - - - - - (6)
$ \sin \left( { - x} \right) $ :
Now, we have a relation that
$ \Rightarrow \sin \left( { - \theta } \right) = - \sin \theta $
Therefore,
$ \Rightarrow \sin \left( { - x} \right) = - \sin x $ - - - - - - (7)
So, now putting the values of equations (2), (3), (4), (5), (6), (7) in equation (1), we get
$ \Rightarrow LHS = \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} $
$
= \dfrac{{\sec x \cdot \sin x \cdot \left( { - \cot x} \right)}}{{ - \sec x \cdot \left( { - \cot x} \right) \cdot \left( { - \sin x} \right)}} \\
= \dfrac{1}{{\left( { - 1} \right)\left( { - 1} \right)}} \\
= 1 \;
$
Hence, LHS = RHS.
Therefore, we proved that $ \dfrac{{\cos ec\left( {90^\circ - x} \right) \cdot \sin \left( {180^\circ - x} \right) \cdot \cot \left( {360^\circ - x} \right)}}{{\sec \left( {180^\circ + x} \right) \cdot \tan \left( {90^\circ + x} \right) \cdot \sin \left( { - x} \right)}} = 1 $ .
Note: Here, note that when the angle is made with X –Axis, we don’t change the trigonometric function and just change the sign according to the quadrant. But, when the angle is being made between X – Axis and Y – Axis, then we need to change the sign according to the quadrant and the trigonometric function as well.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

