
Prove that $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\csc A+\cot A$?
Answer
494.4k+ views
Hint: We first use the submultiple formulas $1+\cos A=2{{\cos }^{2}}\dfrac{A}{2}$, $1-\cos A=2{{\sin }^{2}}\dfrac{A}{2}$, $\sin A=2\sin \dfrac{A}{2}\cos \dfrac{A}{2}$ to break the expression. Then we take $2\cos \dfrac{A}{2}$ and $2\sin \dfrac{A}{2}$ common. We omit the $\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)$ part and multiply $\cos \dfrac{A}{2}$. The final multiplication gives the right hand part of $\dfrac{1+\cos A}{\sin A}$ on simplification. .
Complete step by step solution:
We first simplify the left-hand side expression of $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}$.
We use the formulas of submultiple $1+\cos A=2{{\cos }^{2}}\dfrac{A}{2}$, $1-\cos A=2{{\sin }^{2}}\dfrac{A}{2}$, $\sin A=2\sin \dfrac{A}{2}\cos \dfrac{A}{2}$.
We get $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\left( 1+\cos A \right)-\sin A}{\sin A-\left( 1-\cos A \right)}$.
So, $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2{{\cos }^{2}}\dfrac{A}{2}-2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}-2{{\sin }^{2}}\dfrac{A}{2}}$.
Now we take $2\cos \dfrac{A}{2}$ and $2\sin \dfrac{A}{2}$ common from the numerator and the denominator respectively.
$\dfrac{2{{\cos }^{2}}\dfrac{A}{2}-2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}-2{{\sin }^{2}}\dfrac{A}{2}}=\dfrac{2\cos \dfrac{A}{2}\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)}{2\sin \dfrac{A}{2}\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)}$.
We omit the $\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)$ part from both the numerator and the denominator.
We get $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}}$.
We now multiply $\cos \dfrac{A}{2}$ part to both the numerator and the denominator.
We get $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2\cos \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}=\dfrac{2{{\cos }^{2}}\dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}$.
We use the submultiple formulas again to get
$\begin{align}
& \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1} \\
& =\dfrac{2{{\cos }^{2}}\dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} \\
& =\dfrac{1+\cos A}{\sin A} \\
\end{align}$
We now break the summation and get $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{1}{\sin A}+\dfrac{\cos A}{\sin A}=\csc A+\cot A$.
Thus proved $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\csc A+\cot A$.
Note:
We can also simplify the right-hand part through back process solving to reach the common part of $\dfrac{2\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}}$. As the two parts give the same solution, we can say that both of the expressions are equal.
Complete step by step solution:
We first simplify the left-hand side expression of $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}$.
We use the formulas of submultiple $1+\cos A=2{{\cos }^{2}}\dfrac{A}{2}$, $1-\cos A=2{{\sin }^{2}}\dfrac{A}{2}$, $\sin A=2\sin \dfrac{A}{2}\cos \dfrac{A}{2}$.
We get $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{\left( 1+\cos A \right)-\sin A}{\sin A-\left( 1-\cos A \right)}$.
So, $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2{{\cos }^{2}}\dfrac{A}{2}-2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}-2{{\sin }^{2}}\dfrac{A}{2}}$.
Now we take $2\cos \dfrac{A}{2}$ and $2\sin \dfrac{A}{2}$ common from the numerator and the denominator respectively.
$\dfrac{2{{\cos }^{2}}\dfrac{A}{2}-2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}-2{{\sin }^{2}}\dfrac{A}{2}}=\dfrac{2\cos \dfrac{A}{2}\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)}{2\sin \dfrac{A}{2}\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)}$.
We omit the $\left( \cos \dfrac{A}{2}-\sin \dfrac{A}{2} \right)$ part from both the numerator and the denominator.
We get $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}}$.
We now multiply $\cos \dfrac{A}{2}$ part to both the numerator and the denominator.
We get $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{2\cos \dfrac{A}{2}\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}=\dfrac{2{{\cos }^{2}}\dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}}$.
We use the submultiple formulas again to get
$\begin{align}
& \dfrac{\cos A-\sin A+1}{\cos A+\sin A-1} \\
& =\dfrac{2{{\cos }^{2}}\dfrac{A}{2}}{2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} \\
& =\dfrac{1+\cos A}{\sin A} \\
\end{align}$
We now break the summation and get $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\dfrac{1}{\sin A}+\dfrac{\cos A}{\sin A}=\csc A+\cot A$.
Thus proved $\dfrac{\cos A-\sin A+1}{\cos A+\sin A-1}=\csc A+\cot A$.
Note:
We can also simplify the right-hand part through back process solving to reach the common part of $\dfrac{2\cos \dfrac{A}{2}}{2\sin \dfrac{A}{2}}$. As the two parts give the same solution, we can say that both of the expressions are equal.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

