
Prove that $\dfrac{\cos A}{\left( 1+\sin A \right)}+\dfrac{1+\sin A}{\left( \cos A \right)}=2\sec A$.
Answer
528.6k+ views
Hint: Consider the L.H.S and take the L.C.M of the denominator of the two terms and simplify. Use the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ and expand the terms in the numerator. Now, use the algebraic identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ to simplify the numerator further and take the common terms together. Cancel the common terms from the numerator and the denominator to get the R.H.S. Use the conversion $\dfrac{1}{\cos x}=\sec x$.
Complete step by step solution:
Here we have been provided with the L.H.S expression $\dfrac{\cos A}{\left( 1+\sin A \right)}+\dfrac{1+\sin A}{\left( \cos A \right)}$ and we are asked it to prove it equal to the R.H.S expression $2\sec A$.
Now, here we will simplify the L.H.S using some basic trigonometric identities and try to get the R.H.S, so we have,
$\Rightarrow L.H.S=\dfrac{\cos A}{\left( 1+\sin A \right)}+\dfrac{1+\sin A}{\left( \cos A \right)}$
Taking the L.C.M we get,
$\Rightarrow L.H.S=\dfrac{\left( {{\cos }^{2}}A \right)+{{\left( 1+\sin A \right)}^{2}}}{\left( 1+\sin A \right)\left( \cos A \right)}$
Using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ to expand the term containing the sine function in the numerator we get,
$\begin{align}
& \Rightarrow L.H.S=\dfrac{{{\cos }^{2}}A+1+{{\sin }^{2}}A+2\sin A}{\left( 1+\sin A \right)\left( \cos A \right)} \\
& \Rightarrow L.H.S=\dfrac{\left( {{\cos }^{2}}A+{{\sin }^{2}}A \right)+1+2\sin A}{\left( 1+\sin A \right)\left( \cos A \right)} \\
\end{align}$
Using the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ we get,
$\begin{align}
& \Rightarrow L.H.S=\dfrac{1+1+2\sin A}{\left( 1+\sin A \right)\left( \cos A \right)} \\
& \Rightarrow L.H.S=\dfrac{2+2\sin A}{\left( 1+\sin A \right)\left( \cos A \right)} \\
& \Rightarrow L.H.S=\dfrac{2\left( 1+\sin A \right)}{\left( 1+\sin A \right)\left( \cos A \right)} \\
\end{align}$
Cancelling the common terms from the numerator and the denominator we get,
$\Rightarrow L.H.S=\dfrac{2}{\left( \cos A \right)}$
Using the conversion $\dfrac{1}{\cos x}=\sec x$ we get,
$\begin{align}
& \Rightarrow L.H.S=2\sec A \\
& \therefore L.H.S=R.H.S \\
\end{align}$
Note: Remember all the trigonometric identities as they will help in solving the Question in less time. There are some more basic trigonometric identities like ${{\csc }^{2}}x-{{\cot }^{2}}x=1$ and ${{\sec }^{2}}x-{{\tan }^{2}}x=1$. You may note that here we cannot solve the R.H.S because there we have only one term which cannot be simplified easily in such a way that we might get the R.H.S. That is why we focused on the L.H.S only. In higher mathematics we have many more trigonometric identities which must be remembered.
Complete step by step solution:
Here we have been provided with the L.H.S expression $\dfrac{\cos A}{\left( 1+\sin A \right)}+\dfrac{1+\sin A}{\left( \cos A \right)}$ and we are asked it to prove it equal to the R.H.S expression $2\sec A$.
Now, here we will simplify the L.H.S using some basic trigonometric identities and try to get the R.H.S, so we have,
$\Rightarrow L.H.S=\dfrac{\cos A}{\left( 1+\sin A \right)}+\dfrac{1+\sin A}{\left( \cos A \right)}$
Taking the L.C.M we get,
$\Rightarrow L.H.S=\dfrac{\left( {{\cos }^{2}}A \right)+{{\left( 1+\sin A \right)}^{2}}}{\left( 1+\sin A \right)\left( \cos A \right)}$
Using the algebraic identity ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ to expand the term containing the sine function in the numerator we get,
$\begin{align}
& \Rightarrow L.H.S=\dfrac{{{\cos }^{2}}A+1+{{\sin }^{2}}A+2\sin A}{\left( 1+\sin A \right)\left( \cos A \right)} \\
& \Rightarrow L.H.S=\dfrac{\left( {{\cos }^{2}}A+{{\sin }^{2}}A \right)+1+2\sin A}{\left( 1+\sin A \right)\left( \cos A \right)} \\
\end{align}$
Using the trigonometric identity ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ we get,
$\begin{align}
& \Rightarrow L.H.S=\dfrac{1+1+2\sin A}{\left( 1+\sin A \right)\left( \cos A \right)} \\
& \Rightarrow L.H.S=\dfrac{2+2\sin A}{\left( 1+\sin A \right)\left( \cos A \right)} \\
& \Rightarrow L.H.S=\dfrac{2\left( 1+\sin A \right)}{\left( 1+\sin A \right)\left( \cos A \right)} \\
\end{align}$
Cancelling the common terms from the numerator and the denominator we get,
$\Rightarrow L.H.S=\dfrac{2}{\left( \cos A \right)}$
Using the conversion $\dfrac{1}{\cos x}=\sec x$ we get,
$\begin{align}
& \Rightarrow L.H.S=2\sec A \\
& \therefore L.H.S=R.H.S \\
\end{align}$
Note: Remember all the trigonometric identities as they will help in solving the Question in less time. There are some more basic trigonometric identities like ${{\csc }^{2}}x-{{\cot }^{2}}x=1$ and ${{\sec }^{2}}x-{{\tan }^{2}}x=1$. You may note that here we cannot solve the R.H.S because there we have only one term which cannot be simplified easily in such a way that we might get the R.H.S. That is why we focused on the L.H.S only. In higher mathematics we have many more trigonometric identities which must be remembered.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

