
Prove that \[\dfrac{{\cos A}}{{1 + \sin A}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\]
Answer
494.1k+ views
Hint: Here, we need to prove the given equation. And for this, we will solve the LHS part and compare it with the RHS part. We will also use some trigonometric ratios identities like, \[1 = {\cos ^2}A + {\sin ^2}A\] , \[\cos 2A = {\cos ^2}A - {\sin ^2}A\] , \[\sin 2A = 2\sin A\cos A\] and \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] . Also we will use some formulas too and they are, \[{a^2} - {b^2} = (a - b)(a + b)\] and \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\] . We must also know the value of \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] . We will use all these identities to get the final output.
Complete step-by-step answer:
Given that,
\[\dfrac{{\cos A}}{{1 + \sin A}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\]
Here, we will first prove the LHS part and then will compare it with the RHS part.
LHS
\[ = \dfrac{{\cos A}}{{1 + \sin A}}\]
Multiply and divide by 2 in both the trigonometric ratios, we will get,
\[ = \dfrac{{\cos 2\left( {\dfrac{A}{2}} \right)}}{{1 + \sin 2\left( {\dfrac{A}{2}} \right)}}\]
We know that, \[\cos 2A = {\cos ^2}A - {\sin ^2}A\] and so applying this identity, we will get,
\[ = \dfrac{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) - {{\sin }^2}\left( {\dfrac{A}{2}} \right)}}{{1 + \sin 2\left( {\dfrac{A}{2}} \right)}}\]
We know this identity that, \[1 = {\cos ^2}A + {\sin ^2}A\] and so applying this, we will get,
\[ = \dfrac{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) - {{\sin }^2}\left( {\dfrac{A}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) + {{\sin }^2}\left( {\dfrac{A}{2}} \right) + \sin 2\left( {\dfrac{A}{2}} \right)}}\]
We know that, \[\sin 2A = 2\sin A\cos A\] and so applying this, we will get,
\[ = \dfrac{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) - {{\sin }^2}\left( {\dfrac{A}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) + {{\sin }^2}\left( {\dfrac{A}{2}} \right) + 2\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{A}{2}} \right)}}\]
We also know this formula, \[{a^2} - {b^2} = (a - b)(a + b)\] and here, we have rearrange the denominator, we will get,
\[ = \dfrac{{\left[ {\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)} \right]\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) + 2\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{A}{2}} \right) + {{\sin }^2}\left( {\dfrac{A}{2}} \right)}}\]
We will use this formula, \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\] and so applying this, we will get,
\[ = \dfrac{{\left[ {\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)} \right]\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}{{{{\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}^2}}}\]
Opening the brackets of the denominator, we will get,
\[ = \dfrac{{\left[ {\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)} \right]\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}{{\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}\]
\[ = \dfrac{{\left[ {\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)} \right]}}{{\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}\] ---------- (1)
Dividing both the numerator and denominator by\[\cos \left( {\dfrac{A}{2}} \right)\] , we will get,
\[ = \dfrac{{\dfrac{{\cos \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}} - \dfrac{{\sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}{{\dfrac{{\cos \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}} + \dfrac{{\sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}\]
We know that, \[\tan A = \dfrac{{\sin A}}{{\cos A}}\] , we will get,
\[ = \dfrac{{1 - \tan \left( {\dfrac{A}{2}} \right)}}{{1 + \tan \left( {\dfrac{A}{2}} \right)}}\]
We know the value of \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] and so applying this, we will get,
\[ = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( {\dfrac{A}{2}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{4}} \right)\tan \left( {\dfrac{A}{2}} \right)}}\]
We will use this identity \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] and using this, we will get,
\[ = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\]
=RHS
Note: After solving the LHS part till equation (1), we can start solving the RHS part too…
RHS
\[ = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\]
\[ = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( {\dfrac{A}{2}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{4}} \right)\tan \left( {\dfrac{A}{2}} \right)}}\]
\[ = \dfrac{{1 - \tan \left( {\dfrac{A}{2}} \right)}}{{1 + \tan \left( {\dfrac{A}{2}} \right)}}\]
\[ = \dfrac{{1 - \dfrac{{\sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}{{1 + \dfrac{{\sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}\]
\[ = \dfrac{{\dfrac{{\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}{{\dfrac{{\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}\]
\[ = \dfrac{{\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)}}\]
= LHS till equation (1)
Thus, LHS = RHS.
Hence, it is proved \[\dfrac{{\cos A}}{{1 + \sin A}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\] .
Complete step-by-step answer:
Given that,
\[\dfrac{{\cos A}}{{1 + \sin A}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\]
Here, we will first prove the LHS part and then will compare it with the RHS part.
LHS
\[ = \dfrac{{\cos A}}{{1 + \sin A}}\]
Multiply and divide by 2 in both the trigonometric ratios, we will get,
\[ = \dfrac{{\cos 2\left( {\dfrac{A}{2}} \right)}}{{1 + \sin 2\left( {\dfrac{A}{2}} \right)}}\]
We know that, \[\cos 2A = {\cos ^2}A - {\sin ^2}A\] and so applying this identity, we will get,
\[ = \dfrac{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) - {{\sin }^2}\left( {\dfrac{A}{2}} \right)}}{{1 + \sin 2\left( {\dfrac{A}{2}} \right)}}\]
We know this identity that, \[1 = {\cos ^2}A + {\sin ^2}A\] and so applying this, we will get,
\[ = \dfrac{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) - {{\sin }^2}\left( {\dfrac{A}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) + {{\sin }^2}\left( {\dfrac{A}{2}} \right) + \sin 2\left( {\dfrac{A}{2}} \right)}}\]
We know that, \[\sin 2A = 2\sin A\cos A\] and so applying this, we will get,
\[ = \dfrac{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) - {{\sin }^2}\left( {\dfrac{A}{2}} \right)}}{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) + {{\sin }^2}\left( {\dfrac{A}{2}} \right) + 2\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{A}{2}} \right)}}\]
We also know this formula, \[{a^2} - {b^2} = (a - b)(a + b)\] and here, we have rearrange the denominator, we will get,
\[ = \dfrac{{\left[ {\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)} \right]\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}{{{{\cos }^2}\left( {\dfrac{A}{2}} \right) + 2\sin \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{A}{2}} \right) + {{\sin }^2}\left( {\dfrac{A}{2}} \right)}}\]
We will use this formula, \[{a^2} + 2ab + {b^2} = {\left( {a + b} \right)^2}\] and so applying this, we will get,
\[ = \dfrac{{\left[ {\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)} \right]\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}{{{{\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}^2}}}\]
Opening the brackets of the denominator, we will get,
\[ = \dfrac{{\left[ {\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)} \right]\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}{{\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}\]
\[ = \dfrac{{\left[ {\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)} \right]}}{{\left[ {\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)} \right]}}\] ---------- (1)
Dividing both the numerator and denominator by\[\cos \left( {\dfrac{A}{2}} \right)\] , we will get,
\[ = \dfrac{{\dfrac{{\cos \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}} - \dfrac{{\sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}{{\dfrac{{\cos \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}} + \dfrac{{\sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}\]
We know that, \[\tan A = \dfrac{{\sin A}}{{\cos A}}\] , we will get,
\[ = \dfrac{{1 - \tan \left( {\dfrac{A}{2}} \right)}}{{1 + \tan \left( {\dfrac{A}{2}} \right)}}\]
We know the value of \[\tan \left( {\dfrac{\pi }{4}} \right) = 1\] and so applying this, we will get,
\[ = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( {\dfrac{A}{2}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{4}} \right)\tan \left( {\dfrac{A}{2}} \right)}}\]
We will use this identity \[\tan (A - B) = \dfrac{{\tan A - \tan B}}{{1 + \tan A\tan B}}\] and using this, we will get,
\[ = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\]
=RHS
Note: After solving the LHS part till equation (1), we can start solving the RHS part too…
RHS
\[ = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\]
\[ = \dfrac{{\tan \left( {\dfrac{\pi }{4}} \right) - \tan \left( {\dfrac{A}{2}} \right)}}{{1 + \tan \left( {\dfrac{\pi }{4}} \right)\tan \left( {\dfrac{A}{2}} \right)}}\]
\[ = \dfrac{{1 - \tan \left( {\dfrac{A}{2}} \right)}}{{1 + \tan \left( {\dfrac{A}{2}} \right)}}\]
\[ = \dfrac{{1 - \dfrac{{\sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}{{1 + \dfrac{{\sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}\]
\[ = \dfrac{{\dfrac{{\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}{{\dfrac{{\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right)}}}}\]
\[ = \dfrac{{\cos \left( {\dfrac{A}{2}} \right) - \sin \left( {\dfrac{A}{2}} \right)}}{{\cos \left( {\dfrac{A}{2}} \right) + \sin \left( {\dfrac{A}{2}} \right)}}\]
= LHS till equation (1)
Thus, LHS = RHS.
Hence, it is proved \[\dfrac{{\cos A}}{{1 + \sin A}} = \tan \left( {\dfrac{\pi }{4} - \dfrac{A}{2}} \right)\] .
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

