
Prove that $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$?
Answer
495.3k+ views
Hint: We have sum of two terms in the left-hand side of $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$. We take the LCM of the denominators. Then we add them in the denominators. Then we use the identity of ${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$ to simplify the numerator and also use ${{\sin }^{2}}x+{{\cos }^{2}}x=1$.
Complete step-by-step answer:
We have the sum of two terms in $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}$. We take the LCM of the denominators as the multiplications of those terms.
The equation becomes
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+{{\left( 1+\sin A \right)}^{2}}}{\cos A\left( 1+\sin A \right)}$.
We break the square as
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. So, ${{\left( 1+\sin A \right)}^{2}}=1+{{\sin }^{2}}A+2\sin A$.
The equation becomes
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+{{\left( 1+\sin A \right)}^{2}}}{\cos A\left( 1+\sin A \right)}=\dfrac{{{\cos }^{2}}A+1+{{\sin }^{2}}A+2\sin A}{\cos A\left( 1+\sin A \right)}$.
We know that
${{\sin }^{2}}x+{{\cos }^{2}}x=1$. We get $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2+2\sin A}{\cos A\left( 1+\sin A \right)}$.
We take 2 common from the numerator to get
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2\left( 1+\sin A \right)}{\cos A\left( 1+\sin A \right)}$.
We omit the common from both numerator and denominator and get
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2\left( 1+\sin A \right)}{\cos A\left( 1+\sin A \right)}=\dfrac{2}{\cos A}$.
We use the inverse formula to get
$\dfrac{1}{\cos x}=\sec x$. So, $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2}{\cos A}=2\sec A$.
Thus verified $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$.
Note: It is important to remember that the condition to eliminate the $\left( 1+\sin A \right)$ from both denominator and numerator is $\left( 1+\sin A \right)\ne 0$. No domain is given for the variable $A$. The value of $\sin A\ne -1$ is essential. The simplified condition will be $A\ne \dfrac{\left( 4n-1 \right)\pi }{2},n\in \mathbb{Z}$.
Complete step-by-step answer:
We have the sum of two terms in $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}$. We take the LCM of the denominators as the multiplications of those terms.
The equation becomes
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+{{\left( 1+\sin A \right)}^{2}}}{\cos A\left( 1+\sin A \right)}$.
We break the square as
${{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab$. So, ${{\left( 1+\sin A \right)}^{2}}=1+{{\sin }^{2}}A+2\sin A$.
The equation becomes
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{{{\cos }^{2}}A+{{\left( 1+\sin A \right)}^{2}}}{\cos A\left( 1+\sin A \right)}=\dfrac{{{\cos }^{2}}A+1+{{\sin }^{2}}A+2\sin A}{\cos A\left( 1+\sin A \right)}$.
We know that
${{\sin }^{2}}x+{{\cos }^{2}}x=1$. We get $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2+2\sin A}{\cos A\left( 1+\sin A \right)}$.
We take 2 common from the numerator to get
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2\left( 1+\sin A \right)}{\cos A\left( 1+\sin A \right)}$.
We omit the common from both numerator and denominator and get
$\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2\left( 1+\sin A \right)}{\cos A\left( 1+\sin A \right)}=\dfrac{2}{\cos A}$.
We use the inverse formula to get
$\dfrac{1}{\cos x}=\sec x$. So, $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=\dfrac{2}{\cos A}=2\sec A$.
Thus verified $\dfrac{\cos A}{1+\sin A}+\dfrac{1+\sin A}{\cos A}=2\sec A$.
Note: It is important to remember that the condition to eliminate the $\left( 1+\sin A \right)$ from both denominator and numerator is $\left( 1+\sin A \right)\ne 0$. No domain is given for the variable $A$. The value of $\sin A\ne -1$ is essential. The simplified condition will be $A\ne \dfrac{\left( 4n-1 \right)\pi }{2},n\in \mathbb{Z}$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

