
Prove that \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]?
Answer
524.4k+ views
Hint: We take LHS and simplify it to get RHS. We divide the numerator and the denominator by Sine function. We know that cotangent is the ratio of cosine to sine function and using the relation between cosine and cotangent we can solve this.
Complete step by step solution:
Given
\[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]
Now take
\[LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\] and \[RHS = \csc A + \cot A\].
Now take LHS,
\[LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\]
Now divide the numerator and denominator by \[\sin A\]
\[LHS = \dfrac{{\left( {\dfrac{{\cos A - \sin A + 1}}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A + \sin A - 1}}{{\sin A}}} \right)}}\]
\[LHS = \dfrac{{\left( {\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}} \right)}}\]
\[LHS = \dfrac{{\left( {\dfrac{{\cos A}}{{\sin A}} - 1 + \dfrac{1}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A}}{{\sin A}} + 1 - \dfrac{1}{{\sin A}}} \right)}}\]
We know \[\dfrac{{\cos A}}{{\sin A}} = \cot A\] and \[\dfrac{1}{{\sin A}} = \csc A\]then we have,
\[LHS = \dfrac{{\cot A - 1 + \csc A}}{{\cot A + 1 - \csc A}}\]
We know \[{\csc ^2}A - {\cot ^2}A = 1\], applying this in the numerator we have,
\[LHS = \dfrac{{\cot A + \csc A - \left( {{{\csc }^2}A - {{\cot }^2}A} \right)}}{{\cot A + 1 - \csc A}}\]
Now applying \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] then we have,
\[LHS = \dfrac{{\cot A + \csc A - \left( {\left( {\csc A - \cot A} \right)\left( {\csc A + \cot A} \right)} \right)}}{{\cot A + 1 - \csc A}}\]
Now raking \[\csc A + \cot A\] common we have,
\[LHS = \dfrac{{\left( {\csc A + \cot A} \right)\left( {1 - \left( {\csc A - \cot A} \right)} \right)}}{{\cot A + 1 - \csc A}}\]
\[LHS = \dfrac{{\left( {\csc A + \cot A} \right)\left( {1 - \csc A + \cot A} \right)}}{{\cot A + 1 - \csc A}}\]
Now cancelling the terms we have,
\[LHS = \csc A + \cot A\]
\[ \Rightarrow LHS = RHS\].
Thus \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]. Hence proved.
Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Complete step by step solution:
Given
\[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]
Now take
\[LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\] and \[RHS = \csc A + \cot A\].
Now take LHS,
\[LHS = \dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}}\]
Now divide the numerator and denominator by \[\sin A\]
\[LHS = \dfrac{{\left( {\dfrac{{\cos A - \sin A + 1}}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A + \sin A - 1}}{{\sin A}}} \right)}}\]
\[LHS = \dfrac{{\left( {\dfrac{{\cos A}}{{\sin A}} - \dfrac{{\sin A}}{{\sin A}} + \dfrac{1}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A}}{{\sin A}} + \dfrac{{\sin A}}{{\sin A}} - \dfrac{1}{{\sin A}}} \right)}}\]
\[LHS = \dfrac{{\left( {\dfrac{{\cos A}}{{\sin A}} - 1 + \dfrac{1}{{\sin A}}} \right)}}{{\left( {\dfrac{{\cos A}}{{\sin A}} + 1 - \dfrac{1}{{\sin A}}} \right)}}\]
We know \[\dfrac{{\cos A}}{{\sin A}} = \cot A\] and \[\dfrac{1}{{\sin A}} = \csc A\]then we have,
\[LHS = \dfrac{{\cot A - 1 + \csc A}}{{\cot A + 1 - \csc A}}\]
We know \[{\csc ^2}A - {\cot ^2}A = 1\], applying this in the numerator we have,
\[LHS = \dfrac{{\cot A + \csc A - \left( {{{\csc }^2}A - {{\cot }^2}A} \right)}}{{\cot A + 1 - \csc A}}\]
Now applying \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\] then we have,
\[LHS = \dfrac{{\cot A + \csc A - \left( {\left( {\csc A - \cot A} \right)\left( {\csc A + \cot A} \right)} \right)}}{{\cot A + 1 - \csc A}}\]
Now raking \[\csc A + \cot A\] common we have,
\[LHS = \dfrac{{\left( {\csc A + \cot A} \right)\left( {1 - \left( {\csc A - \cot A} \right)} \right)}}{{\cot A + 1 - \csc A}}\]
\[LHS = \dfrac{{\left( {\csc A + \cot A} \right)\left( {1 - \csc A + \cot A} \right)}}{{\cot A + 1 - \csc A}}\]
Now cancelling the terms we have,
\[LHS = \csc A + \cot A\]
\[ \Rightarrow LHS = RHS\].
Thus \[\dfrac{{\cos A - \sin A + 1}}{{\cos A + \sin A - 1}} = \csc A + \cot A\]. Hence proved.
Note: Remember A graph is divided into four quadrants, all the trigonometric functions are positive in the first quadrant, all the trigonometric functions are negative in the second quadrant except sine and cosine functions, tangent and cotangent are positive in the third quadrant while all others are negative and similarly all the trigonometric functions are negative in the fourth quadrant except cosine and secant.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

