
Prove that: $\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }=\tan 37{}^\circ$
Answer
606.6k+ views
Hint: We will first start by dividing the numerator and denominator by $\cos 8{}^\circ $. Then, we will use the trigonometric identity that $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$ to prove the given result.
Complete step-by-step answer:
Now, we have to prove that $\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }=\tan 37{}^\circ $.
Now, we will take LHS given to us as,
$\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }$
Now, we divide the both numerator and denominator with $\cos 8{}^\circ $. So, we have,
$\Rightarrow \dfrac{\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ }}{\dfrac{\cos 8{}^\circ +\sin 8{}^\circ }{\cos 8{}^\circ }}$
Now, we know that $\dfrac{\sin A}{\cos A}=\tan A$
$\Rightarrow \dfrac{1-\tan 8{}^\circ }{1+\tan 8{}^\circ }$
Now, we know that $1=\tan 45{}^\circ $
$\Rightarrow \dfrac{\tan 45{}^\circ -\tan 8{}^\circ }{1+\tan 45{}^\circ \times \tan 8{}^\circ }$
Now, we know that $\dfrac{\tan A-\tan B}{1+\tan A\tan B}=\tan \left( A-B \right)$
$\begin{align}
& \Rightarrow \tan \left( 45{}^\circ -8{}^\circ \right) \\
& =\tan 37{}^\circ \\
\end{align}$
Since, we have LHS = RHS.
Hence Proved.
Note: It is important to note that how we have used the fact that $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$ to convert the expression $\dfrac{1-\tan 8{}^\circ }{1+\tan 8{}^\circ }$ to $\dfrac{\tan 45{}^\circ -\tan 8{}^\circ }{1+\tan 45{}^\circ \times \tan 8{}^\circ }$. Also, in this conversion we have deliberately left the 1 in denominator unchanged. So, that the formula can be applied successfully.
Complete step-by-step answer:
Now, we have to prove that $\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }=\tan 37{}^\circ $.
Now, we will take LHS given to us as,
$\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ +\sin 8{}^\circ }$
Now, we divide the both numerator and denominator with $\cos 8{}^\circ $. So, we have,
$\Rightarrow \dfrac{\dfrac{\cos 8{}^\circ -\sin 8{}^\circ }{\cos 8{}^\circ }}{\dfrac{\cos 8{}^\circ +\sin 8{}^\circ }{\cos 8{}^\circ }}$
Now, we know that $\dfrac{\sin A}{\cos A}=\tan A$
$\Rightarrow \dfrac{1-\tan 8{}^\circ }{1+\tan 8{}^\circ }$
Now, we know that $1=\tan 45{}^\circ $
$\Rightarrow \dfrac{\tan 45{}^\circ -\tan 8{}^\circ }{1+\tan 45{}^\circ \times \tan 8{}^\circ }$
Now, we know that $\dfrac{\tan A-\tan B}{1+\tan A\tan B}=\tan \left( A-B \right)$
$\begin{align}
& \Rightarrow \tan \left( 45{}^\circ -8{}^\circ \right) \\
& =\tan 37{}^\circ \\
\end{align}$
Since, we have LHS = RHS.
Hence Proved.
Note: It is important to note that how we have used the fact that $\tan \left( A-B \right)=\dfrac{\tan A-\tan B}{1+\tan A\tan B}$ to convert the expression $\dfrac{1-\tan 8{}^\circ }{1+\tan 8{}^\circ }$ to $\dfrac{\tan 45{}^\circ -\tan 8{}^\circ }{1+\tan 45{}^\circ \times \tan 8{}^\circ }$. Also, in this conversion we have deliberately left the 1 in denominator unchanged. So, that the formula can be applied successfully.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

