
Prove that $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$
Answer
509.7k+ views
Hint: We know that the sine and cosine terms can be easily converted into tangent terms, so to prove the given identity convert $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$ by using the respective formulas.
Complete step-by-step answer:
The given identity is $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$, we need to prove the given identity. The left hand side part of the identity is in term of $\cos 2{\text{A}}$ and $\sin 2{\text{A}}$, and left hand terms contains only $\tan {\text{A}}$. So, we need to convert $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$.
As we know that e the formula for $\cos {\text{2A}}$ in terms of tangent angle is,
\[\cos {\text{2A}} = \dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\]
Similarly, the formula for $\sin {\text{2A}}$ in terms of tangent angle is,
\[\sin {\text{2A}} = \dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\]
Now, substitute the value \[\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\] for $\cos {\text{2A}}$ and \[\dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\] for $\sin {\text{2A}}$ in the left hand side of the given equation as,
$\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}{{1 - \dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}$
Simplify the above equation by taking the LCM of $1 + {\tan ^2}{\text{A}}$ in the denominator and simplify further as,
$
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}{{\dfrac{{1 + {{\tan }^2}{\text{A}} - 2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}} \\
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}} - 2\tan {\text{A}}}} \\
$
As we know the identities,
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
$
Use the above identities in the simplified equation as,
$
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{{{\left( 1 \right)}^2} - {{\tan }^2}{\text{A}}}}{{{{\left( 1 \right)}^2} + {{\tan }^2}{\text{A}} - 2\left( 1 \right)\left( {\tan {\text{A}}} \right)}} \\
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\left( {1 - \tan {\text{A}}} \right)\left( {1 + \tan {\text{A}}} \right)}}{{{{\left( {1 - \tan {\text{A}}} \right)}^2}}} \\
$
Now, simplify the equation to obtain,
$\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\left( {1 + \tan {\text{A}}} \right)}}{{\left( {1 - \tan {\text{A}}} \right)}}$
Hence, it is proved that $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$.
Note: While simplifying the equation, arrange the terms of the equation such that we can use the identity of $\left( {{a^2} - {b^2}} \right)$ and the identity of ${\left( {a - b} \right)^2}$ to obtain the desired result and we careful about the sign in the formula of $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$.
Complete step-by-step answer:
The given identity is $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$, we need to prove the given identity. The left hand side part of the identity is in term of $\cos 2{\text{A}}$ and $\sin 2{\text{A}}$, and left hand terms contains only $\tan {\text{A}}$. So, we need to convert $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$.
As we know that e the formula for $\cos {\text{2A}}$ in terms of tangent angle is,
\[\cos {\text{2A}} = \dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\]
Similarly, the formula for $\sin {\text{2A}}$ in terms of tangent angle is,
\[\sin {\text{2A}} = \dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\]
Now, substitute the value \[\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\] for $\cos {\text{2A}}$ and \[\dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\] for $\sin {\text{2A}}$ in the left hand side of the given equation as,
$\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}{{1 - \dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}$
Simplify the above equation by taking the LCM of $1 + {\tan ^2}{\text{A}}$ in the denominator and simplify further as,
$
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}{{\dfrac{{1 + {{\tan }^2}{\text{A}} - 2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}} \\
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}} - 2\tan {\text{A}}}} \\
$
As we know the identities,
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
$
Use the above identities in the simplified equation as,
$
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{{{\left( 1 \right)}^2} - {{\tan }^2}{\text{A}}}}{{{{\left( 1 \right)}^2} + {{\tan }^2}{\text{A}} - 2\left( 1 \right)\left( {\tan {\text{A}}} \right)}} \\
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\left( {1 - \tan {\text{A}}} \right)\left( {1 + \tan {\text{A}}} \right)}}{{{{\left( {1 - \tan {\text{A}}} \right)}^2}}} \\
$
Now, simplify the equation to obtain,
$\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\left( {1 + \tan {\text{A}}} \right)}}{{\left( {1 - \tan {\text{A}}} \right)}}$
Hence, it is proved that $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$.
Note: While simplifying the equation, arrange the terms of the equation such that we can use the identity of $\left( {{a^2} - {b^2}} \right)$ and the identity of ${\left( {a - b} \right)^2}$ to obtain the desired result and we careful about the sign in the formula of $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
