
Prove that $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$
Answer
573.3k+ views
Hint: We know that the sine and cosine terms can be easily converted into tangent terms, so to prove the given identity convert $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$ by using the respective formulas.
Complete step-by-step answer:
The given identity is $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$, we need to prove the given identity. The left hand side part of the identity is in term of $\cos 2{\text{A}}$ and $\sin 2{\text{A}}$, and left hand terms contains only $\tan {\text{A}}$. So, we need to convert $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$.
As we know that e the formula for $\cos {\text{2A}}$ in terms of tangent angle is,
\[\cos {\text{2A}} = \dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\]
Similarly, the formula for $\sin {\text{2A}}$ in terms of tangent angle is,
\[\sin {\text{2A}} = \dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\]
Now, substitute the value \[\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\] for $\cos {\text{2A}}$ and \[\dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\] for $\sin {\text{2A}}$ in the left hand side of the given equation as,
$\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}{{1 - \dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}$
Simplify the above equation by taking the LCM of $1 + {\tan ^2}{\text{A}}$ in the denominator and simplify further as,
$
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}{{\dfrac{{1 + {{\tan }^2}{\text{A}} - 2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}} \\
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}} - 2\tan {\text{A}}}} \\
$
As we know the identities,
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
$
Use the above identities in the simplified equation as,
$
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{{{\left( 1 \right)}^2} - {{\tan }^2}{\text{A}}}}{{{{\left( 1 \right)}^2} + {{\tan }^2}{\text{A}} - 2\left( 1 \right)\left( {\tan {\text{A}}} \right)}} \\
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\left( {1 - \tan {\text{A}}} \right)\left( {1 + \tan {\text{A}}} \right)}}{{{{\left( {1 - \tan {\text{A}}} \right)}^2}}} \\
$
Now, simplify the equation to obtain,
$\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\left( {1 + \tan {\text{A}}} \right)}}{{\left( {1 - \tan {\text{A}}} \right)}}$
Hence, it is proved that $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$.
Note: While simplifying the equation, arrange the terms of the equation such that we can use the identity of $\left( {{a^2} - {b^2}} \right)$ and the identity of ${\left( {a - b} \right)^2}$ to obtain the desired result and we careful about the sign in the formula of $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$.
Complete step-by-step answer:
The given identity is $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$, we need to prove the given identity. The left hand side part of the identity is in term of $\cos 2{\text{A}}$ and $\sin 2{\text{A}}$, and left hand terms contains only $\tan {\text{A}}$. So, we need to convert $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$.
As we know that e the formula for $\cos {\text{2A}}$ in terms of tangent angle is,
\[\cos {\text{2A}} = \dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\]
Similarly, the formula for $\sin {\text{2A}}$ in terms of tangent angle is,
\[\sin {\text{2A}} = \dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\]
Now, substitute the value \[\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\] for $\cos {\text{2A}}$ and \[\dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}\] for $\sin {\text{2A}}$ in the left hand side of the given equation as,
$\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}{{1 - \dfrac{{2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}$
Simplify the above equation by taking the LCM of $1 + {\tan ^2}{\text{A}}$ in the denominator and simplify further as,
$
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}}{{\dfrac{{1 + {{\tan }^2}{\text{A}} - 2\tan {\text{A}}}}{{1 + {{\tan }^2}{\text{A}}}}}} \\
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 - {{\tan }^2}{\text{A}}}}{{1 + {{\tan }^2}{\text{A}} - 2\tan {\text{A}}}} \\
$
As we know the identities,
$
\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right) \\
{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab \\
$
Use the above identities in the simplified equation as,
$
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{{{\left( 1 \right)}^2} - {{\tan }^2}{\text{A}}}}{{{{\left( 1 \right)}^2} + {{\tan }^2}{\text{A}} - 2\left( 1 \right)\left( {\tan {\text{A}}} \right)}} \\
\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\left( {1 - \tan {\text{A}}} \right)\left( {1 + \tan {\text{A}}} \right)}}{{{{\left( {1 - \tan {\text{A}}} \right)}^2}}} \\
$
Now, simplify the equation to obtain,
$\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{\left( {1 + \tan {\text{A}}} \right)}}{{\left( {1 - \tan {\text{A}}} \right)}}$
Hence, it is proved that $\dfrac{{\cos {\text{2A}}}}{{1 - \sin {\text{2A}}}} = \dfrac{{1 + \tan {\text{A}}}}{{1 - \tan {\text{A}}}}$.
Note: While simplifying the equation, arrange the terms of the equation such that we can use the identity of $\left( {{a^2} - {b^2}} \right)$ and the identity of ${\left( {a - b} \right)^2}$ to obtain the desired result and we careful about the sign in the formula of $\cos {\text{2A}}$ and $\sin {\text{2A}}$ in terms of $\tan {\text{A}}$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

