
Prove that: $\dfrac{a\sec \text{A + }b\sec \text{B + }c\sec \text{C}}{\operatorname{tanA}\cdot tanB\cdot tanC}\text{ = 2R}$
Answer
616.2k+ views
Hint: As A, B and C are the angles of a triangle, use the property the sum of the three angles of a triangle is equal to${{180}^{\circ }}$. Now adjust any one of the angles on the right hand side and take tan on both sides of the equation. Then use the law of sines $\dfrac{a}{\sin \text{A}}\text{ = }\dfrac{b}{\operatorname{sinB}}\text{ = }\dfrac{c}{\operatorname{sinC}}\text{ = 2R}$, where a, b and c are the three sides of the triangle and R is the circumradius of the triangle, to prove $\dfrac{a\sec \text{A + }b\sec \text{B + }c\sec \text{C}}{\operatorname{tanA}\cdot tanB\cdot tanC}\text{ = 2R}$.
Complete step-by-step answer:
We know that A, B and C are the angles of a triangle. Thus, we can write
$\text{A + B + C = 18}{{\text{0}}^{\circ }}$
Subtracting the angle from both sides of the equation, we get,
$\text{A + B = 18}{{\text{0}}^{\circ }}-\text{ C}$
Taking tan on both sides of the equation, we get,
$\begin{align}
& \tan \left( \text{A+B} \right)\text{ = tan}\left( {{180}^{\circ }}-\text{C} \right) \\
& \Rightarrow \text{ }\dfrac{\tan \text{A + tanB}}{1-\tan \text{A}\tan \text{B}}\text{ = }-\tan \text{C} \\
& \Rightarrow \text{ tanA + tanB = }-\text{tanC}\left( 1-\tan \text{A tanB} \right) \\
& \Rightarrow \text{ tanA + tanB = }-\tan \text{C + tanA tanB tanC} \\
& \Rightarrow \text{ tanA + tanB + tanC = tanA tanB tanC} \\
& \therefore \text{ }\dfrac{\text{sinA}}{\cos \text{A}}\text{ + }\dfrac{\text{sinB}}{\operatorname{cosB}}\text{ + }\dfrac{\text{sinC}}{\operatorname{cosC}}\text{ = tanA tanB tanC }....\left( \text{i} \right) \\
\end{align}$
Now, we know the law of sines, which states that,
$\dfrac{a}{\sin \text{A}}\text{ = }\dfrac{b}{\operatorname{sinB}}\text{ = }\dfrac{c}{\operatorname{sinC}}\text{ = 2R}$
Therefore, the sine of angles A, B and C can be expressed in the form
$\begin{align}
& \sin \text{A = }\dfrac{\text{a}}{\text{2R}}\text{ }....\text{(ii)} \\
& \operatorname{sinB}\text{ = }\dfrac{\text{b}}{\text{2R}}\text{ }....\text{(iii)} \\
& \operatorname{sinC}\text{ = }\dfrac{\text{c}}{\text{2R}}\text{ }....\text{(iv)} \\
\end{align}$
Thus, putting the values of the sine of the angles form equations (ii), (iii) and (iv) in the equation (i), we get,
$\begin{align}
& \dfrac{\text{sinA}}{\cos \text{A}}\text{ + }\dfrac{\text{sinB}}{\operatorname{cosB}}\text{ + }\dfrac{\text{sinC}}{\operatorname{cosC}}\text{ = tanA tanB tanC} \\
& \Rightarrow \text{ }\dfrac{\text{a}}{\text{2RcosA}}\text{ + }\dfrac{\text{b}}{\text{2R cosB}}\text{ + }\dfrac{\text{c}}{\text{2R cosC}}\text{ = tanA tanB tanC} \\
& \Rightarrow \text{ }\dfrac{\text{a secA + b secB + c secC}}{\text{2R}}\text{ = tanA tanB tanC} \\
& \therefore \text{ }\dfrac{\text{a secA + b secB + c secC}}{\text{tanA tanB tanC}}\text{ = 2R } \\
\end{align}$
Hence, it is proved that $\dfrac{a\sec \text{A + }b\sec \text{B + }c\sec \text{C}}{\operatorname{tanA}\cdot tanB\cdot tanC}\text{ = 2R}$.
Note: In any triangle ABC, it is a known property that tanA + tanB + tanC = tanA tanB tanC. So one can also use that directly, instead of proving the property, to prove the statement given in the question. Also, tan($\text{18}{{\text{0}}^{\circ }}-\text{ C}$) is negative because the angle belongs to the second quadrant and the value of tan of any angle in the second quadrant is always negative.
Complete step-by-step answer:
We know that A, B and C are the angles of a triangle. Thus, we can write
$\text{A + B + C = 18}{{\text{0}}^{\circ }}$
Subtracting the angle from both sides of the equation, we get,
$\text{A + B = 18}{{\text{0}}^{\circ }}-\text{ C}$
Taking tan on both sides of the equation, we get,
$\begin{align}
& \tan \left( \text{A+B} \right)\text{ = tan}\left( {{180}^{\circ }}-\text{C} \right) \\
& \Rightarrow \text{ }\dfrac{\tan \text{A + tanB}}{1-\tan \text{A}\tan \text{B}}\text{ = }-\tan \text{C} \\
& \Rightarrow \text{ tanA + tanB = }-\text{tanC}\left( 1-\tan \text{A tanB} \right) \\
& \Rightarrow \text{ tanA + tanB = }-\tan \text{C + tanA tanB tanC} \\
& \Rightarrow \text{ tanA + tanB + tanC = tanA tanB tanC} \\
& \therefore \text{ }\dfrac{\text{sinA}}{\cos \text{A}}\text{ + }\dfrac{\text{sinB}}{\operatorname{cosB}}\text{ + }\dfrac{\text{sinC}}{\operatorname{cosC}}\text{ = tanA tanB tanC }....\left( \text{i} \right) \\
\end{align}$
Now, we know the law of sines, which states that,
$\dfrac{a}{\sin \text{A}}\text{ = }\dfrac{b}{\operatorname{sinB}}\text{ = }\dfrac{c}{\operatorname{sinC}}\text{ = 2R}$
Therefore, the sine of angles A, B and C can be expressed in the form
$\begin{align}
& \sin \text{A = }\dfrac{\text{a}}{\text{2R}}\text{ }....\text{(ii)} \\
& \operatorname{sinB}\text{ = }\dfrac{\text{b}}{\text{2R}}\text{ }....\text{(iii)} \\
& \operatorname{sinC}\text{ = }\dfrac{\text{c}}{\text{2R}}\text{ }....\text{(iv)} \\
\end{align}$
Thus, putting the values of the sine of the angles form equations (ii), (iii) and (iv) in the equation (i), we get,
$\begin{align}
& \dfrac{\text{sinA}}{\cos \text{A}}\text{ + }\dfrac{\text{sinB}}{\operatorname{cosB}}\text{ + }\dfrac{\text{sinC}}{\operatorname{cosC}}\text{ = tanA tanB tanC} \\
& \Rightarrow \text{ }\dfrac{\text{a}}{\text{2RcosA}}\text{ + }\dfrac{\text{b}}{\text{2R cosB}}\text{ + }\dfrac{\text{c}}{\text{2R cosC}}\text{ = tanA tanB tanC} \\
& \Rightarrow \text{ }\dfrac{\text{a secA + b secB + c secC}}{\text{2R}}\text{ = tanA tanB tanC} \\
& \therefore \text{ }\dfrac{\text{a secA + b secB + c secC}}{\text{tanA tanB tanC}}\text{ = 2R } \\
\end{align}$
Hence, it is proved that $\dfrac{a\sec \text{A + }b\sec \text{B + }c\sec \text{C}}{\operatorname{tanA}\cdot tanB\cdot tanC}\text{ = 2R}$.
Note: In any triangle ABC, it is a known property that tanA + tanB + tanC = tanA tanB tanC. So one can also use that directly, instead of proving the property, to prove the statement given in the question. Also, tan($\text{18}{{\text{0}}^{\circ }}-\text{ C}$) is negative because the angle belongs to the second quadrant and the value of tan of any angle in the second quadrant is always negative.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

