
Prove that \[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} = {\tan ^2}\theta \].
Answer
592.2k+ views
Hint: Here we are given to prove two different equalities altogether. We will take them one by one and then try to solve them. Using normal trigonometric formulas will help us to solve this problem like ,\[1 + {\tan ^2}A = {\sec ^2}A\], \[1 + co{t^2}A = cose{c^2}A\], and \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] .
Complete step-by-step answer:
Here we have,
\[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} = {\tan ^2}\theta \]
We start with,
(i) \[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\tan ^2}\theta \]
L.H.S
\[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }}\]
We now, have,
\[1 + ta{n^2}A = se{c^2}A\]
\[1 + co{t^2}A = cose{c^2}A\]
On substituting the above values we get,
\[ = \dfrac{{se{c^2}\theta }}{{cose{c^2}\theta }}\]
Again,
\[se{c^2}\theta = \dfrac{1}{{co{s^2}\theta }}\]
\[cose{c^2}\theta = \dfrac{1}{{si{n^2}\theta }}\]
So, again, if we continue,
\[ = \dfrac{{\dfrac{1}{{co{s^2}\theta }}}}{{\dfrac{1}{{si{n^2}\theta }}}}\]
\[ = \dfrac{{si{n^2}\theta }}{{co{s^2}\theta }}\]
\[ = ta{n^2}\theta \]
For the 2nd part,
(ii) we need to prove,
\[{\left( {\dfrac{{1 - tan\theta }}{{1 - cot\theta }}} \right)^2} = ta{n^2}\theta \]
L.H.S
\[{\left( {\dfrac{{1 - tan\theta }}{{1 - cot\theta }}} \right)^2}\]
As, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\cot \theta }}\]
\[ = {\left( {\dfrac{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}}} \right)^2}\]
On Simplifying, we get,
\[ = {\left( {\dfrac{{\dfrac{{cos\theta - sin\theta }}{{\cos \theta }}}}{{\dfrac{{sin\theta - cos\theta }}{{\sin \theta }}}}} \right)^2}\]
By cancelling out common terms we get,
\[ = {\left( {\dfrac{{\dfrac{1}{{\cos \theta }}}}{{\dfrac{{ - 1}}{{\sin \theta }}}}} \right)^2}\]
\[ = {\left( {\dfrac{{ - \sin \theta }}{{\cos \theta }}} \right)^2}\]
As \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\], we get,
\[ = {( - \tan \theta )^2}\]
On squaring we get,
\[ = {\tan ^2}\theta \]
=RHS
Hence, from (i) and (ii), we get \[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} = {\tan ^2}\theta \]
Note: Some basic trigonometric functions had been used here in this problem. We had used \[1 + ta{n^2}A = se{c^2}A\]and \[1 + co{t^2}A = cose{c^2}A\]. Also we had deal with \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\cot \theta }}\]to simplify our problem and get our desired result.
One should remember all basic trigonometric properties and use them to simplify the problems.
Complete step-by-step answer:
Here we have,
\[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} = {\tan ^2}\theta \]
We start with,
(i) \[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\tan ^2}\theta \]
L.H.S
\[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }}\]
We now, have,
\[1 + ta{n^2}A = se{c^2}A\]
\[1 + co{t^2}A = cose{c^2}A\]
On substituting the above values we get,
\[ = \dfrac{{se{c^2}\theta }}{{cose{c^2}\theta }}\]
Again,
\[se{c^2}\theta = \dfrac{1}{{co{s^2}\theta }}\]
\[cose{c^2}\theta = \dfrac{1}{{si{n^2}\theta }}\]
So, again, if we continue,
\[ = \dfrac{{\dfrac{1}{{co{s^2}\theta }}}}{{\dfrac{1}{{si{n^2}\theta }}}}\]
\[ = \dfrac{{si{n^2}\theta }}{{co{s^2}\theta }}\]
\[ = ta{n^2}\theta \]
For the 2nd part,
(ii) we need to prove,
\[{\left( {\dfrac{{1 - tan\theta }}{{1 - cot\theta }}} \right)^2} = ta{n^2}\theta \]
L.H.S
\[{\left( {\dfrac{{1 - tan\theta }}{{1 - cot\theta }}} \right)^2}\]
As, \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\cot \theta }}\]
\[ = {\left( {\dfrac{{1 - \dfrac{{\sin \theta }}{{\cos \theta }}}}{{1 - \dfrac{{\cos \theta }}{{\sin \theta }}}}} \right)^2}\]
On Simplifying, we get,
\[ = {\left( {\dfrac{{\dfrac{{cos\theta - sin\theta }}{{\cos \theta }}}}{{\dfrac{{sin\theta - cos\theta }}{{\sin \theta }}}}} \right)^2}\]
By cancelling out common terms we get,
\[ = {\left( {\dfrac{{\dfrac{1}{{\cos \theta }}}}{{\dfrac{{ - 1}}{{\sin \theta }}}}} \right)^2}\]
\[ = {\left( {\dfrac{{ - \sin \theta }}{{\cos \theta }}} \right)^2}\]
As \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\], we get,
\[ = {( - \tan \theta )^2}\]
On squaring we get,
\[ = {\tan ^2}\theta \]
=RHS
Hence, from (i) and (ii), we get \[\dfrac{{1 + {{\tan }^2}\theta }}{{1 + {{\cot }^2}\theta }} = {\left( {\dfrac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} = {\tan ^2}\theta \]
Note: Some basic trigonometric functions had been used here in this problem. We had used \[1 + ta{n^2}A = se{c^2}A\]and \[1 + co{t^2}A = cose{c^2}A\]. Also we had deal with \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{1}{{\cot \theta }}\]to simplify our problem and get our desired result.
One should remember all basic trigonometric properties and use them to simplify the problems.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

