
Prove that:
$\dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{{{\sec }^3}\theta - \cos e{c^3}\theta }} = {\sin ^2}\theta {\cos ^2}\theta $
Answer
544.2k+ views
Hint:
By using the basic trigonometric identity given below we can prove the above expression that is $\dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{{{\sec }^3}\theta - \cos e{c^3}\theta }} = {\sin ^2}\theta {\cos ^2}\theta $ . We can prove the given statement by using ${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$ . In order to solve and simplify the given expression we have to use the identity and express our given expression in the simplest form and thereby solve it.
Complete step by step solution:
$\dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{{{\sec }^3}\theta - \cos e{c^3}\theta }} = {\sin ^2}\theta {\cos ^2}\theta $
Proof:
Taking L.H.S of the given equation ,
We will get ,
$ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{{{\sec }^3}\theta - \cos e{c^3}\theta }}$
Applying the identity ${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$ ,
We will get the following,
$ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{(\sec \theta - \cos ec \theta )({{\sec }^2}\theta + \sec \theta \cos ec \theta + \cos e{c^2}\theta )}}$
We know that $\sec \theta = \dfrac{1}{{\cos \theta }}$ and $\cos ec \theta = \dfrac{1}{{\sin \theta }}$ ,
Now substitute these in the above equation,
We will get ,
\[ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{\left( {\dfrac{1}{{\cos \theta }} - \dfrac{1}{{\sin \theta }}} \right)\left( {\dfrac{1}{{{{\cos }^2}\theta }} + \dfrac{1}{{\cos \theta \sin \theta }} + \dfrac{1}{{{{\sin }^2}\theta }}} \right)}}\]
\[ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{{{\sin }^2}\theta + \cos \theta \sin \theta + {{\cos }^2}\theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
We also know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$ , and simplify the expression,
\[ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )}}{{\left( {\dfrac{1}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{1 + \cos \theta \sin \theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
Now, substitute $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ ,
We will get,
\[ \Rightarrow \dfrac{{\left( {1 + \dfrac{{\cos \theta }}{{\sin \theta }} + \dfrac{{\sin \theta }}{{\cos \theta }}} \right)}}{{\left( {\dfrac{1}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{1 + \cos \theta \sin \theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
\[ \Rightarrow \dfrac{{\left( {\dfrac{{\cos \theta \sin \theta + {{\cos }^2}\theta + {{\sin }^2}\theta }}{{\cos \theta \sin \theta }}} \right)}}{{\left( {\dfrac{1}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{1 + \cos \theta \sin \theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
Now, put ${\sin ^2}\theta + {\cos ^2}\theta = 1$ , and simplify the expression,
\[ \Rightarrow \dfrac{{\left( {\dfrac{{\cos \theta \sin \theta + 1}}{{\cos \theta \sin \theta }}} \right)}}{{\left( {\dfrac{1}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{1 + \cos \theta \sin \theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
\[
\Rightarrow \dfrac{1}{{\left( {\dfrac{1}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}} \\
= {\cos ^2}\theta {\sin ^2}\theta \\
\]
It is equal to R.H.S.
Since L.H.S is equal to R.H.S.
Hence proved.
Note:
Some other equations needed for solving these types of problem are:
${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$,
$\sec \theta = \dfrac{1}{{\cos \theta }}$ , $\cos ec \theta = \dfrac{1}{{\sin \theta }}$ , $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
In order to solve and simplify the given expression we have to use the identity and express our given expression in the simplest form and thereby solve it. Also, while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly, but we can also transform both sides to a common expression if we see no direct way to connect the two.
By using the basic trigonometric identity given below we can prove the above expression that is $\dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{{{\sec }^3}\theta - \cos e{c^3}\theta }} = {\sin ^2}\theta {\cos ^2}\theta $ . We can prove the given statement by using ${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$ . In order to solve and simplify the given expression we have to use the identity and express our given expression in the simplest form and thereby solve it.
Complete step by step solution:
$\dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{{{\sec }^3}\theta - \cos e{c^3}\theta }} = {\sin ^2}\theta {\cos ^2}\theta $
Proof:
Taking L.H.S of the given equation ,
We will get ,
$ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{{{\sec }^3}\theta - \cos e{c^3}\theta }}$
Applying the identity ${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$ ,
We will get the following,
$ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{(\sec \theta - \cos ec \theta )({{\sec }^2}\theta + \sec \theta \cos ec \theta + \cos e{c^2}\theta )}}$
We know that $\sec \theta = \dfrac{1}{{\cos \theta }}$ and $\cos ec \theta = \dfrac{1}{{\sin \theta }}$ ,
Now substitute these in the above equation,
We will get ,
\[ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{\left( {\dfrac{1}{{\cos \theta }} - \dfrac{1}{{\sin \theta }}} \right)\left( {\dfrac{1}{{{{\cos }^2}\theta }} + \dfrac{1}{{\cos \theta \sin \theta }} + \dfrac{1}{{{{\sin }^2}\theta }}} \right)}}\]
\[ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )(\sin \theta - \cos \theta )}}{{\left( {\dfrac{{\sin \theta - \cos \theta }}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{{{\sin }^2}\theta + \cos \theta \sin \theta + {{\cos }^2}\theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
We also know that ${\sin ^2}\theta + {\cos ^2}\theta = 1$ , and simplify the expression,
\[ \Rightarrow \dfrac{{(1 + \cot \theta + \tan \theta )}}{{\left( {\dfrac{1}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{1 + \cos \theta \sin \theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
Now, substitute $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$ ,
We will get,
\[ \Rightarrow \dfrac{{\left( {1 + \dfrac{{\cos \theta }}{{\sin \theta }} + \dfrac{{\sin \theta }}{{\cos \theta }}} \right)}}{{\left( {\dfrac{1}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{1 + \cos \theta \sin \theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
\[ \Rightarrow \dfrac{{\left( {\dfrac{{\cos \theta \sin \theta + {{\cos }^2}\theta + {{\sin }^2}\theta }}{{\cos \theta \sin \theta }}} \right)}}{{\left( {\dfrac{1}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{1 + \cos \theta \sin \theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
Now, put ${\sin ^2}\theta + {\cos ^2}\theta = 1$ , and simplify the expression,
\[ \Rightarrow \dfrac{{\left( {\dfrac{{\cos \theta \sin \theta + 1}}{{\cos \theta \sin \theta }}} \right)}}{{\left( {\dfrac{1}{{\cos \theta \sin \theta }}} \right)\left( {\dfrac{{1 + \cos \theta \sin \theta }}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}}\]
\[
\Rightarrow \dfrac{1}{{\left( {\dfrac{1}{{{{\cos }^2}\theta {{\sin }^2}\theta }}} \right)}} \\
= {\cos ^2}\theta {\sin ^2}\theta \\
\]
It is equal to R.H.S.
Since L.H.S is equal to R.H.S.
Hence proved.
Note:
Some other equations needed for solving these types of problem are:
${a^3} - {b^3} = (a - b)({a^2} + ab + {b^2})$,
$\sec \theta = \dfrac{1}{{\cos \theta }}$ , $\cos ec \theta = \dfrac{1}{{\sin \theta }}$ , $\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}$ and $\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}$
In order to solve and simplify the given expression we have to use the identity and express our given expression in the simplest form and thereby solve it. Also, while approaching a trigonometric problem one should keep in mind that one should work with one side at a time and manipulate it to the other side. The most straightforward way to do this is to simplify one side to the other directly, but we can also transform both sides to a common expression if we see no direct way to connect the two.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

