
Prove that:
$\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$
Answer
608.1k+ views
- Hint: In this given question we can solve the question by converting $\sec A$in the Left Hand Side (LHS) into $\dfrac{1}{\cos A}$. Then using the identity ${{\sin }^{2}}A+{{\cos }^{2}}A=1$ in place of 1 we can prove that the Left Hand Side (LHS) is equal to the Right Hand Side (RHS).
Complete step-by-step solution -
In this question, we are asked to prove that the Left Hand Side (LHS) $\dfrac{1+\sec A}{\sec A}$ is equal to the Right Hand Side (RHS) $\dfrac{{{\sin }^{2}}A}{1-\cos A}$, that is $\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$.
Let us start the proving from the LHS and arrive at the RHS.
$\begin{align}
& LHS=\dfrac{1+\sec A}{\sec A} \\
& \\
\end{align}$
$=\dfrac{1+\dfrac{1}{\cos A}}{\dfrac{1}{\cos A}}$ (as $\sec A=\dfrac{1}{\cos A}$)
$=\dfrac{\cos A+1}{\cos A}\times \cos A$
$=\cos A+1.............(1.1)$
Multiplying $\left( 1-\cos A \right)$to both the numerator and the denominator in equation (1.1), we obtain
$LHS=\dfrac{\left( 1+\cos A \right)\left( 1-\cos A \right)}{\left( 1-\cos A \right)}$
$=\dfrac{1-{{\cos }^{2}}A}{1-\cos A}................(1.2)$
Now, we know that
$\begin{align}
& {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\
& \Rightarrow 1-{{\cos }^{2}}A={{\sin }^{2}}A................(1.3) \\
\end{align}$
Putting the value of $1-{{\cos }^{2}}A$ as obtained in equation (1.3) in equation (1.2), we get
$LHS=\dfrac{1-{{\cos }^{2}}A}{1-\cos A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}=RHS$
Therefore, we arrive at the required condition of equalized Left Hand Side (LHS) and Right Hand Side (RHS). That is
$\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$.
Note: Note that in equation (1.1), we need to multiply and divide the expression by a term involving $\cos A$ so that the numerator and denominator become quadratic in cos term and therefore we can convert it in terms of sin terms by using equation (1.3).
Complete step-by-step solution -
In this question, we are asked to prove that the Left Hand Side (LHS) $\dfrac{1+\sec A}{\sec A}$ is equal to the Right Hand Side (RHS) $\dfrac{{{\sin }^{2}}A}{1-\cos A}$, that is $\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$.
Let us start the proving from the LHS and arrive at the RHS.
$\begin{align}
& LHS=\dfrac{1+\sec A}{\sec A} \\
& \\
\end{align}$
$=\dfrac{1+\dfrac{1}{\cos A}}{\dfrac{1}{\cos A}}$ (as $\sec A=\dfrac{1}{\cos A}$)
$=\dfrac{\cos A+1}{\cos A}\times \cos A$
$=\cos A+1.............(1.1)$
Multiplying $\left( 1-\cos A \right)$to both the numerator and the denominator in equation (1.1), we obtain
$LHS=\dfrac{\left( 1+\cos A \right)\left( 1-\cos A \right)}{\left( 1-\cos A \right)}$
$=\dfrac{1-{{\cos }^{2}}A}{1-\cos A}................(1.2)$
Now, we know that
$\begin{align}
& {{\sin }^{2}}A+{{\cos }^{2}}A=1 \\
& \Rightarrow 1-{{\cos }^{2}}A={{\sin }^{2}}A................(1.3) \\
\end{align}$
Putting the value of $1-{{\cos }^{2}}A$ as obtained in equation (1.3) in equation (1.2), we get
$LHS=\dfrac{1-{{\cos }^{2}}A}{1-\cos A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}=RHS$
Therefore, we arrive at the required condition of equalized Left Hand Side (LHS) and Right Hand Side (RHS). That is
$\dfrac{1+\sec A}{\sec A}=\dfrac{{{\sin }^{2}}A}{1-\cos A}$.
Note: Note that in equation (1.1), we need to multiply and divide the expression by a term involving $\cos A$ so that the numerator and denominator become quadratic in cos term and therefore we can convert it in terms of sin terms by using equation (1.3).
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

