
How can you prove that \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}}\] ?
Answer
483.3k+ views
Hint: In the above question, we are given a trigonometric equation containing the tangent and cotangent function. We have to prove that \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}}\] . In order to approach the solution, we can use the trigonometric identity of the cotangent function which is given as,
\[ \Rightarrow \cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}\]
Use the above identity in the LHS of the equation \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}}\] and then put the value for \[\cot 45^\circ = 1\] in the RHS. Further after substituting \[\cot a = \dfrac{1}{{\tan a}}\] and \[1 = \dfrac{{\tan a}}{{\tan a}}\] and solving we can obtain the required RHS equal to the LHS.
Complete step by step answer:
Given trigonometric equation is \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}}\] .
We have to prove that the LHS is equal to the RHS.
Since, we that the trigonometric identity for a cotangent function which is given as,
\[ \Rightarrow \cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}\]
Now putting \[A = a\] and \[B = 45^\circ \] in the above identity, we get
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\cot a\cot 45^\circ + 1}}{{\cot 45^\circ - \cot a}}\]
Since we know that \[\cot 45^\circ = 1\] , therefore now we have
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\cot a + 1}}{{1 - \cot a}}\]
Putting \[\cot a = \dfrac{1}{{\tan a}}\] and \[1 = \dfrac{{\tan a}}{{\tan a}}\] in the RHS of the above equation, we can write
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\dfrac{1}{{\tan a}} + \dfrac{{\tan a}}{{\tan a}}}}{{\dfrac{{\tan a}}{{\tan a}} - \dfrac{1}{{\tan a}}}}\]
Solving the numerator and the denominator in the RHS, we get
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\dfrac{{1 + \tan a}}{{\tan a}}}}{{\dfrac{{\tan a - 1}}{{\tan a}}}}\]
Cancelling the \[\tan a\] term from the numerator and the denominator, we can write the above equation as,
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan a}}{{\tan a - 1}}\]
Hence,
\[LHS = RHS\]
That is the required proof of the above given problem.
Therefore, we have solved \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan a}}{{\tan a - 1}}\].
Note:
The cotangent function or the cot function is exactly the opposite of the tangent function or the tan function. Therefore it is written as
\[ \Rightarrow \cot x = \dfrac{1}{{\tan x}}\]
If \[\theta \] is an acute angle at the vertex A in a right angled triangle \[\vartriangle ABC\] , right angled at B then the cotangent function is defined as the ratio of the base AB and the perpendicular height BC, i.e.
\[ \Rightarrow \cot \theta = \dfrac{{base}}{{height}}\]
Or,
\[ \Rightarrow \cot \theta = \dfrac{{AB}}{{BC}}\]
\[ \Rightarrow \cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}\]
Use the above identity in the LHS of the equation \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}}\] and then put the value for \[\cot 45^\circ = 1\] in the RHS. Further after substituting \[\cot a = \dfrac{1}{{\tan a}}\] and \[1 = \dfrac{{\tan a}}{{\tan a}}\] and solving we can obtain the required RHS equal to the LHS.
Complete step by step answer:
Given trigonometric equation is \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan \left( a \right)}}{{\tan \left( a \right) - 1}}\] .
We have to prove that the LHS is equal to the RHS.
Since, we that the trigonometric identity for a cotangent function which is given as,
\[ \Rightarrow \cot \left( {A - B} \right) = \dfrac{{\cot A\cot B + 1}}{{\cot B - \cot A}}\]
Now putting \[A = a\] and \[B = 45^\circ \] in the above identity, we get
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\cot a\cot 45^\circ + 1}}{{\cot 45^\circ - \cot a}}\]
Since we know that \[\cot 45^\circ = 1\] , therefore now we have
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\cot a + 1}}{{1 - \cot a}}\]
Putting \[\cot a = \dfrac{1}{{\tan a}}\] and \[1 = \dfrac{{\tan a}}{{\tan a}}\] in the RHS of the above equation, we can write
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\dfrac{1}{{\tan a}} + \dfrac{{\tan a}}{{\tan a}}}}{{\dfrac{{\tan a}}{{\tan a}} - \dfrac{1}{{\tan a}}}}\]
Solving the numerator and the denominator in the RHS, we get
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{\dfrac{{1 + \tan a}}{{\tan a}}}}{{\dfrac{{\tan a - 1}}{{\tan a}}}}\]
Cancelling the \[\tan a\] term from the numerator and the denominator, we can write the above equation as,
\[ \Rightarrow \cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan a}}{{\tan a - 1}}\]
Hence,
\[LHS = RHS\]
That is the required proof of the above given problem.
Therefore, we have solved \[\cot \left( {a - 45^\circ } \right) = \dfrac{{1 + \tan a}}{{\tan a - 1}}\].
Note:
The cotangent function or the cot function is exactly the opposite of the tangent function or the tan function. Therefore it is written as
\[ \Rightarrow \cot x = \dfrac{1}{{\tan x}}\]
If \[\theta \] is an acute angle at the vertex A in a right angled triangle \[\vartriangle ABC\] , right angled at B then the cotangent function is defined as the ratio of the base AB and the perpendicular height BC, i.e.
\[ \Rightarrow \cot \theta = \dfrac{{base}}{{height}}\]
Or,
\[ \Rightarrow \cot \theta = \dfrac{{AB}}{{BC}}\]
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

