
Prove that $\cot A + \cot \left( {{{60}^ \circ } + A} \right) + \cot \left( {{{120}^ \circ } + A} \right) = 3\cot 3A$
Answer
500.4k+ views
Hint: A very important formula of $\cot \theta $ is used here. There is also requirement of value of $\cot \left( {{{60}^ \circ }} \right)$ and $\cot \left( {{{120}^ \circ }} \right)$ to simplify this question and there is also requirement of value of $\cot \left( {3\theta } \right)$. This tells us the importance of formulas in trigonometry and also in this question.
Formula used: $1.\,\,\cot \left( {C + D} \right) = \dfrac{{\cot C\cot D - 1}}{{\cot C + \cot D}}$
$2.\,\,\cot \,3\theta = \dfrac{{\cot 3\theta - 3\cot \theta }}{{3{{\cot }^2}\theta - 1}}$
Complete step-by-step answer:
In the given question,
We know that
$\,\cot \left( {C + D} \right) = \dfrac{{\cot C\cot D - 1}}{{\cot C + \cot D}}$
We have,
$L.H.S = \,\cot A + \cot \left( {{{60}^ \circ } + A} \right) + \cot \left( {{{120}^ \circ } + A} \right)$
Now, using the above formula
$ \Rightarrow \cot A + \dfrac{{\cot {{60}^ \circ } \times \cot A - 1}}{{\cot A + \cot {{60}^ \circ }}} + \dfrac{{\cot {{120}^ \circ } \times \cot A - 1}}{{\cot A + \cot {{120}^ \circ }}}$
We know that, $\cot {60^ \circ } = \dfrac{1}{{\sqrt 3 }}\,\,and\,\,\cot {120^ \circ } = \dfrac{{ - 1}}{{\sqrt 3 }}$
$ \Rightarrow \cot A + \dfrac{{\dfrac{1}{{\sqrt 3 }}\cot A - 1}}{{\cot A + \dfrac{1}{{\sqrt 3 }}}} + \dfrac{{\dfrac{{ - 1}}{{\sqrt 3 }}\cot A - 1}}{{\cot A - \dfrac{1}{{\sqrt 3 }}}}$
Now, taking L.C.M
$ \Rightarrow \cot A + \dfrac{{\left( {\dfrac{1}{{\sqrt 3 }}\cot A - 1} \right)\left( {\cot A - \dfrac{1}{{\sqrt 3 }}} \right) + \left( {\dfrac{{ - 1}}{{\sqrt 3 }}\cot A - 1} \right)\left( {\cot A + \dfrac{1}{{\sqrt 3 }}} \right)}}{{{{\cot }^2}A - \dfrac{1}{3}}}$
$ \Rightarrow \cot A + \dfrac{{\dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A - \dfrac{1}{{\sqrt 3 }}}}{{{{\cot }^2}A - \dfrac{1}{3}}}$
Again, taking L.C.M
$ \Rightarrow \dfrac{{{{\cot }^3}A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A - \dfrac{1}{{\sqrt 3 }}}}{{\dfrac{{3{{\cot }^2}A - 1}}{3}}}$
$ \Rightarrow \dfrac{{{{\cot }^3}A - \dfrac{3}{3}\cot A - 2\cot A}}{{\dfrac{{3{{\cot }^2}A - 1}}{3}}}$
$ \Rightarrow \dfrac{{3\left( {{{\cot }^3}A - 3\cot A} \right)}}{{\left( {3{{\cot }^2}A - 1} \right)}}$
Now, using the formula
$\left[ {\,\cot \,3\theta = \dfrac{{\cot 3\theta - 3\cot \theta }}{{3{{\cot }^2}\theta - 1}}} \right]$
On substituting the value, we have
$ \Rightarrow 3\cot 3\theta = R.H.S$
Therefore, $L.H.S = R.H.S$
Hence, proved.
Note: While doing the questions of trigonometry one can remember that the most important thing here is the formula. If you have a very good grip on formula then you can easily master this topic. Also knowing the conversion of one trigonometric identity into another is a very important aspect. Remember the values of some specific degrees of all trigonometric functions
Formula used: $1.\,\,\cot \left( {C + D} \right) = \dfrac{{\cot C\cot D - 1}}{{\cot C + \cot D}}$
$2.\,\,\cot \,3\theta = \dfrac{{\cot 3\theta - 3\cot \theta }}{{3{{\cot }^2}\theta - 1}}$
Complete step-by-step answer:
In the given question,
We know that
$\,\cot \left( {C + D} \right) = \dfrac{{\cot C\cot D - 1}}{{\cot C + \cot D}}$
We have,
$L.H.S = \,\cot A + \cot \left( {{{60}^ \circ } + A} \right) + \cot \left( {{{120}^ \circ } + A} \right)$
Now, using the above formula
$ \Rightarrow \cot A + \dfrac{{\cot {{60}^ \circ } \times \cot A - 1}}{{\cot A + \cot {{60}^ \circ }}} + \dfrac{{\cot {{120}^ \circ } \times \cot A - 1}}{{\cot A + \cot {{120}^ \circ }}}$
We know that, $\cot {60^ \circ } = \dfrac{1}{{\sqrt 3 }}\,\,and\,\,\cot {120^ \circ } = \dfrac{{ - 1}}{{\sqrt 3 }}$
$ \Rightarrow \cot A + \dfrac{{\dfrac{1}{{\sqrt 3 }}\cot A - 1}}{{\cot A + \dfrac{1}{{\sqrt 3 }}}} + \dfrac{{\dfrac{{ - 1}}{{\sqrt 3 }}\cot A - 1}}{{\cot A - \dfrac{1}{{\sqrt 3 }}}}$
Now, taking L.C.M
$ \Rightarrow \cot A + \dfrac{{\left( {\dfrac{1}{{\sqrt 3 }}\cot A - 1} \right)\left( {\cot A - \dfrac{1}{{\sqrt 3 }}} \right) + \left( {\dfrac{{ - 1}}{{\sqrt 3 }}\cot A - 1} \right)\left( {\cot A + \dfrac{1}{{\sqrt 3 }}} \right)}}{{{{\cot }^2}A - \dfrac{1}{3}}}$
$ \Rightarrow \cot A + \dfrac{{\dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A - \dfrac{1}{{\sqrt 3 }}}}{{{{\cot }^2}A - \dfrac{1}{3}}}$
Again, taking L.C.M
$ \Rightarrow \dfrac{{{{\cot }^3}A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A + \dfrac{1}{{\sqrt 3 }} - \dfrac{1}{{\sqrt 3 }}{{\cot }^2}A - \cot A - \dfrac{1}{3}\cot A - \dfrac{1}{{\sqrt 3 }}}}{{\dfrac{{3{{\cot }^2}A - 1}}{3}}}$
$ \Rightarrow \dfrac{{{{\cot }^3}A - \dfrac{3}{3}\cot A - 2\cot A}}{{\dfrac{{3{{\cot }^2}A - 1}}{3}}}$
$ \Rightarrow \dfrac{{3\left( {{{\cot }^3}A - 3\cot A} \right)}}{{\left( {3{{\cot }^2}A - 1} \right)}}$
Now, using the formula
$\left[ {\,\cot \,3\theta = \dfrac{{\cot 3\theta - 3\cot \theta }}{{3{{\cot }^2}\theta - 1}}} \right]$
On substituting the value, we have
$ \Rightarrow 3\cot 3\theta = R.H.S$
Therefore, $L.H.S = R.H.S$
Hence, proved.
Note: While doing the questions of trigonometry one can remember that the most important thing here is the formula. If you have a very good grip on formula then you can easily master this topic. Also knowing the conversion of one trigonometric identity into another is a very important aspect. Remember the values of some specific degrees of all trigonometric functions
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

