
Prove that $\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\cot 3A$.
Answer
556.5k+ views
Hint: In this question, we have to prove $\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\cot 3A$.
For solving this, we will use the various trigonometric formula given by:
(i) Summation of angles in cot function is given as $\cot \left( A+B \right)=\dfrac{\cot A\cdot \cot B-1}{\cot B+\cot A}$.
(ii) $\cot {{60}^{\circ }}$ is equal to $\dfrac{1}{\sqrt{3}}$.
(iii) $\cot {{120}^{\circ }}=\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)$. $\cot \theta $ is negative in II quadrant so $\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\cot {{60}^{\circ }}=\dfrac{-1}{\sqrt{3}}$.
(iv) $\cot 3\theta =\dfrac{{{\cot }^{3}}\theta -3\cot \theta }{3{{\cot }^{2}}\theta -1}$.
Complete step-by-step solution
Here we are given the equation as $\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\cot 3A$.
We need to prove the left-hand side to be equal to the right-hand side.
Taking left hand side, $\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)$.
We know that $\cot \left( A+B \right)=\dfrac{\cot A\cdot \cot B-1}{\cot B+\cot A}$.
So let us apply this on $\cot \left( {{60}^{\circ }}+A \right)\text{ and }\cos \left( {{120}^{\circ }}+A \right)$ we get:
$\cot A+\dfrac{\cot {{60}^{\circ }}\cdot \cot A-1}{\cot A+\cot {{60}^{\circ }}}+\dfrac{\cot {{120}^{\circ }}\cdot \cot A-1}{\cot A+\cot {{120}^{\circ }}}$.
We know from trigonometric ratio table that $\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}$ and $\cot {{120}^{\circ }}$ can be written as $\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)$ so we get:
$\cot A+\dfrac{\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A+\dfrac{1}{\sqrt{3}}}+\dfrac{\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)\cdot \cot A-1}{\cot A+\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)}$.
We know that, cotangent is negative in II quadrant and ${{180}^{\circ }}-\theta $ will bring cot in II quadrant, so $\cot \left( {{180}^{\circ }}-\theta \right)$ will be equal to $-\cot \theta $.
Hence, $\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\cot {{60}^{\circ }}=\dfrac{-1}{\sqrt{3}}$ putting in the value we get:
$\cot A+\dfrac{\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A+\dfrac{1}{\sqrt{3}}}+\dfrac{-\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A-\dfrac{1}{\sqrt{3}}}$.
Now let us take LCM in the denominator for second and third term, we get:
$\cot A+\dfrac{\left( \dfrac{1}{\sqrt{3}}\cot A-1 \right)\left( \cot A-\dfrac{1}{\sqrt{3}} \right)+\left( -\dfrac{1}{\sqrt{3}}\cot A-1 \right)\left( \cot A+\dfrac{1}{\sqrt{3}} \right)}{\left( \cot A+\dfrac{1}{\sqrt{3}} \right)\left( \cot A-\dfrac{1}{\sqrt{3}} \right)}$.
Applying $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ in the denominator on the second term and simplifying the numerator of the second term by opening bracket, we get:
$\cot A+\dfrac{\left( \dfrac{1}{\sqrt{3}}{{\cot }^{2}}A-\cot A-\dfrac{1}{3}\cot A+\dfrac{1}{\sqrt{3}} \right)+\left( -\dfrac{1}{\sqrt{3}}{{\cot }^{2}}A-\cot A-\dfrac{1}{3}\cot A-\dfrac{1}{\sqrt{3}} \right)}{{{\cot }^{2}}A-\dfrac{1}{3}}$.
Further simplifying the numerator of the second term we get:
$\cot A+\dfrac{\left( -2\cot A-\dfrac{2}{3}\cot A \right)}{{{\cot }^{2}}A-\dfrac{1}{3}}$.
Now taking LCM in the denominator of both terms we get:
$\begin{align}
& \dfrac{\cot A\left( {{\cot }^{2}}A-\dfrac{1}{3} \right)-2\cot A-\dfrac{2}{3}\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\
& \Rightarrow \dfrac{{{\cot }^{3}}A-\dfrac{1}{3}\cot A-2\cot A-\dfrac{2}{3}\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\
\end{align}$.
Now adding $\dfrac{1}{3}\cot A\text{ and }\dfrac{2}{3}\cot A$ we get:
$\Rightarrow \dfrac{{{\cot }^{3}}A-\dfrac{3}{3}\cot A-2\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}}$.
Cancelling 3 we get:
$\begin{align}
& \Rightarrow \dfrac{{{\cot }^{3}}A-\cot A-2\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\
& \Rightarrow \dfrac{{{\cot }^{3}}A-3\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\
\end{align}$.
Taking LCM of 3 in the denominator of the denominator of the term we get:
$\Rightarrow \dfrac{{{\cot }^{3}}A-3\cot A}{\dfrac{3{{\cot }^{2}}A-1}{3}}$.
Taking 3 in the numerator we get:
$\Rightarrow 3\left( \dfrac{{{\cot }^{3}}A-3\cot A}{3{{\cot }^{2}}A-1} \right)$.
Now we know that $\cot 3\theta =\dfrac{{{\cot }^{3}}\theta -3\cot \theta }{3{{\cot }^{2}}\theta -1}$ so we get:
$3\cot A$.
Which is equal to the right-hand side.
Hence proved.
Note: This sum is very tricky with lots of complex calculations, so students should do it carefully step by step without shortcuts. There are huge chances of making mistakes in positive or negative signs. Take LCM carefully. Keep in mind all the trigonometric formulas for solving this sum. $\cot {{120}^{\circ }}$ can also be found using $\cot {{120}^{\circ }}=\cot \left( {{90}^{\circ }}+{{30}^{\circ }} \right)=-\tan {{30}^{\circ }}=\dfrac{-1}{\sqrt{3}}$.
For solving this, we will use the various trigonometric formula given by:
(i) Summation of angles in cot function is given as $\cot \left( A+B \right)=\dfrac{\cot A\cdot \cot B-1}{\cot B+\cot A}$.
(ii) $\cot {{60}^{\circ }}$ is equal to $\dfrac{1}{\sqrt{3}}$.
(iii) $\cot {{120}^{\circ }}=\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)$. $\cot \theta $ is negative in II quadrant so $\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\cot {{60}^{\circ }}=\dfrac{-1}{\sqrt{3}}$.
(iv) $\cot 3\theta =\dfrac{{{\cot }^{3}}\theta -3\cot \theta }{3{{\cot }^{2}}\theta -1}$.
Complete step-by-step solution
Here we are given the equation as $\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)=3\cot 3A$.
We need to prove the left-hand side to be equal to the right-hand side.
Taking left hand side, $\cot A+\cot \left( {{60}^{\circ }}+A \right)+\cos \left( {{120}^{\circ }}+A \right)$.
We know that $\cot \left( A+B \right)=\dfrac{\cot A\cdot \cot B-1}{\cot B+\cot A}$.
So let us apply this on $\cot \left( {{60}^{\circ }}+A \right)\text{ and }\cos \left( {{120}^{\circ }}+A \right)$ we get:
$\cot A+\dfrac{\cot {{60}^{\circ }}\cdot \cot A-1}{\cot A+\cot {{60}^{\circ }}}+\dfrac{\cot {{120}^{\circ }}\cdot \cot A-1}{\cot A+\cot {{120}^{\circ }}}$.
We know from trigonometric ratio table that $\cot {{60}^{\circ }}=\dfrac{1}{\sqrt{3}}$ and $\cot {{120}^{\circ }}$ can be written as $\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)$ so we get:
$\cot A+\dfrac{\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A+\dfrac{1}{\sqrt{3}}}+\dfrac{\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)\cdot \cot A-1}{\cot A+\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)}$.
We know that, cotangent is negative in II quadrant and ${{180}^{\circ }}-\theta $ will bring cot in II quadrant, so $\cot \left( {{180}^{\circ }}-\theta \right)$ will be equal to $-\cot \theta $.
Hence, $\cot \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\cot {{60}^{\circ }}=\dfrac{-1}{\sqrt{3}}$ putting in the value we get:
$\cot A+\dfrac{\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A+\dfrac{1}{\sqrt{3}}}+\dfrac{-\dfrac{1}{\sqrt{3}}\cot A-1}{\cot A-\dfrac{1}{\sqrt{3}}}$.
Now let us take LCM in the denominator for second and third term, we get:
$\cot A+\dfrac{\left( \dfrac{1}{\sqrt{3}}\cot A-1 \right)\left( \cot A-\dfrac{1}{\sqrt{3}} \right)+\left( -\dfrac{1}{\sqrt{3}}\cot A-1 \right)\left( \cot A+\dfrac{1}{\sqrt{3}} \right)}{\left( \cot A+\dfrac{1}{\sqrt{3}} \right)\left( \cot A-\dfrac{1}{\sqrt{3}} \right)}$.
Applying $\left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}}$ in the denominator on the second term and simplifying the numerator of the second term by opening bracket, we get:
$\cot A+\dfrac{\left( \dfrac{1}{\sqrt{3}}{{\cot }^{2}}A-\cot A-\dfrac{1}{3}\cot A+\dfrac{1}{\sqrt{3}} \right)+\left( -\dfrac{1}{\sqrt{3}}{{\cot }^{2}}A-\cot A-\dfrac{1}{3}\cot A-\dfrac{1}{\sqrt{3}} \right)}{{{\cot }^{2}}A-\dfrac{1}{3}}$.
Further simplifying the numerator of the second term we get:
$\cot A+\dfrac{\left( -2\cot A-\dfrac{2}{3}\cot A \right)}{{{\cot }^{2}}A-\dfrac{1}{3}}$.
Now taking LCM in the denominator of both terms we get:
$\begin{align}
& \dfrac{\cot A\left( {{\cot }^{2}}A-\dfrac{1}{3} \right)-2\cot A-\dfrac{2}{3}\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\
& \Rightarrow \dfrac{{{\cot }^{3}}A-\dfrac{1}{3}\cot A-2\cot A-\dfrac{2}{3}\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\
\end{align}$.
Now adding $\dfrac{1}{3}\cot A\text{ and }\dfrac{2}{3}\cot A$ we get:
$\Rightarrow \dfrac{{{\cot }^{3}}A-\dfrac{3}{3}\cot A-2\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}}$.
Cancelling 3 we get:
$\begin{align}
& \Rightarrow \dfrac{{{\cot }^{3}}A-\cot A-2\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\
& \Rightarrow \dfrac{{{\cot }^{3}}A-3\cot A}{{{\cot }^{2}}A-\dfrac{1}{3}} \\
\end{align}$.
Taking LCM of 3 in the denominator of the denominator of the term we get:
$\Rightarrow \dfrac{{{\cot }^{3}}A-3\cot A}{\dfrac{3{{\cot }^{2}}A-1}{3}}$.
Taking 3 in the numerator we get:
$\Rightarrow 3\left( \dfrac{{{\cot }^{3}}A-3\cot A}{3{{\cot }^{2}}A-1} \right)$.
Now we know that $\cot 3\theta =\dfrac{{{\cot }^{3}}\theta -3\cot \theta }{3{{\cot }^{2}}\theta -1}$ so we get:
$3\cot A$.
Which is equal to the right-hand side.
Hence proved.
Note: This sum is very tricky with lots of complex calculations, so students should do it carefully step by step without shortcuts. There are huge chances of making mistakes in positive or negative signs. Take LCM carefully. Keep in mind all the trigonometric formulas for solving this sum. $\cot {{120}^{\circ }}$ can also be found using $\cot {{120}^{\circ }}=\cot \left( {{90}^{\circ }}+{{30}^{\circ }} \right)=-\tan {{30}^{\circ }}=\dfrac{-1}{\sqrt{3}}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

