
Prove that $\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=\sqrt{2}\sin x$?
Answer
551.7k+ views
Hint: In this problem we need to show that $\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)=\sqrt{2}\sin x$. When we observe the given expression, we can say that the given expression is in the form of $\cos \left( A+B \right)-\cos \left( A-B \right)$. In trigonometry we have the formulas for $\cos \left( A+B \right)$ and $\cos \left( A-B \right)$as $\cos \left( A+B \right)$ is $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$ and $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$. Now we will use these two formulas and simplify the obtained equation and write the solution of the equation.
Formula use:
1. $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$.
2. $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$.
3.$\sin \left( \dfrac{3\pi }{4} \right)=-\sin \left( \dfrac{\pi }{4} \right)$.
4.$\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$.
Complete Step by Step Solution:
Given that, $\cos \left( \dfrac{3\pi }{4}+X \right)-\cos \left( \dfrac{3\pi }{4}-X \right)=\sqrt{2}\sin x$.
Considering the LHS part of the above equation, then we will get
$LHS=\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)$
We can observe that the above LHS part is in the form of $\cos \left( A+B \right)-\cos \left( A-B \right)$.
In trigonometry we have the formula for $\cos \left( A+B \right)$ as $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$.
Now we will evaluate $\cos \left( \dfrac{3\pi }{4}+x \right)$ by using the formula of $\cos \left( A+B \right)$, then
$\cos \left( \dfrac{3\pi }{4}+x \right)=\cos \left( \dfrac{3\pi }{4} \right)\cos x-\sin \left( \dfrac{3\pi }{4} \right)\sin x$.
In trigonometry we also have the formula for $\cos \left( A-B \right)$ as $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Now we will evaluate $\cos \left( \dfrac{3\pi }{4}-x \right)$ by using the formula of $\cos \left( A-B \right)$, then
$\cos \left( \dfrac{3\pi }{4}-x \right)=\cos \left( \dfrac{3\pi }{4} \right)\cos x+\sin \left( \dfrac{3\pi }{4} \right)\sin x$.
Now we substitute the two values in the given expression, then we will get
$LHS=\cos \left( \dfrac{3\pi }{4} \right)\cos x-\sin \left( \dfrac{3\pi }{4} \right)\sin x-\left( \cos \left( \dfrac{3\pi }{4} \right)\cos x+\sin \left( \dfrac{3\pi }{4} \right)\sin x \right)$.
Now we will multiply the $-$ to the $\cos \left( \dfrac{3\pi }{4}-x \right)$, then we will get
$LHS=\cos \left( \dfrac{3\pi }{4} \right)\cos x-\sin \left( \dfrac{3\pi }{4} \right)\sin x-\cos \left( \dfrac{3\pi }{4} \right)\cos x-\sin \left( \dfrac{3\pi }{4} \right)\sin x$.
Now we will cancel the opposite sign terms, then we will have
$\begin{align}
& LHS=-\sin \left( \dfrac{3\pi }{4} \right)\sin x-\sin \left( \dfrac{3\pi }{4} \right)\sin x \\
& \Rightarrow LHS=-2\sin \left( \dfrac{3\pi }{4} \right)\sin x \\
\end{align}$
We have the value $\sin \left( \dfrac{3\pi }{4} \right)=-\sin \left( \dfrac{\pi }{4} \right)$ . now we will substitute it in the above expression, then,
$\Rightarrow LHS=-2\sin x\left( -\sin \left( \dfrac{3\pi }{4} \right) \right)$.
Now we will simplify the above expression, then we will get
$\Rightarrow LHS=2\sin \left( \dfrac{\pi }{4} \right)\sin x$.
We know that$\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$. Now we will use it for above expression, then
$\Rightarrow LHS=2\left( \dfrac{1}{\sqrt{2}} \right)\sin x$.
Now we will simplify the above expression, then we will have
$\begin{align}
& \Rightarrow LHS=\sqrt{2}\sin x \\
& \therefore LHS=RHS \\
\end{align}$.
Note:
For this problem we also use the simple method to get the result. In advanced trigonometry we have the formula $\cos \left( A+B \right)-\cos \left( A-B \right)=-2\sin A\sin B$. We will use this formula directly and substitute all the values we have in the above formula and simplify it to get the result.
Formula use:
1. $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$.
2. $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$.
3.$\sin \left( \dfrac{3\pi }{4} \right)=-\sin \left( \dfrac{\pi }{4} \right)$.
4.$\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$.
Complete Step by Step Solution:
Given that, $\cos \left( \dfrac{3\pi }{4}+X \right)-\cos \left( \dfrac{3\pi }{4}-X \right)=\sqrt{2}\sin x$.
Considering the LHS part of the above equation, then we will get
$LHS=\cos \left( \dfrac{3\pi }{4}+x \right)-\cos \left( \dfrac{3\pi }{4}-x \right)$
We can observe that the above LHS part is in the form of $\cos \left( A+B \right)-\cos \left( A-B \right)$.
In trigonometry we have the formula for $\cos \left( A+B \right)$ as $\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B$.
Now we will evaluate $\cos \left( \dfrac{3\pi }{4}+x \right)$ by using the formula of $\cos \left( A+B \right)$, then
$\cos \left( \dfrac{3\pi }{4}+x \right)=\cos \left( \dfrac{3\pi }{4} \right)\cos x-\sin \left( \dfrac{3\pi }{4} \right)\sin x$.
In trigonometry we also have the formula for $\cos \left( A-B \right)$ as $\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B$
Now we will evaluate $\cos \left( \dfrac{3\pi }{4}-x \right)$ by using the formula of $\cos \left( A-B \right)$, then
$\cos \left( \dfrac{3\pi }{4}-x \right)=\cos \left( \dfrac{3\pi }{4} \right)\cos x+\sin \left( \dfrac{3\pi }{4} \right)\sin x$.
Now we substitute the two values in the given expression, then we will get
$LHS=\cos \left( \dfrac{3\pi }{4} \right)\cos x-\sin \left( \dfrac{3\pi }{4} \right)\sin x-\left( \cos \left( \dfrac{3\pi }{4} \right)\cos x+\sin \left( \dfrac{3\pi }{4} \right)\sin x \right)$.
Now we will multiply the $-$ to the $\cos \left( \dfrac{3\pi }{4}-x \right)$, then we will get
$LHS=\cos \left( \dfrac{3\pi }{4} \right)\cos x-\sin \left( \dfrac{3\pi }{4} \right)\sin x-\cos \left( \dfrac{3\pi }{4} \right)\cos x-\sin \left( \dfrac{3\pi }{4} \right)\sin x$.
Now we will cancel the opposite sign terms, then we will have
$\begin{align}
& LHS=-\sin \left( \dfrac{3\pi }{4} \right)\sin x-\sin \left( \dfrac{3\pi }{4} \right)\sin x \\
& \Rightarrow LHS=-2\sin \left( \dfrac{3\pi }{4} \right)\sin x \\
\end{align}$
We have the value $\sin \left( \dfrac{3\pi }{4} \right)=-\sin \left( \dfrac{\pi }{4} \right)$ . now we will substitute it in the above expression, then,
$\Rightarrow LHS=-2\sin x\left( -\sin \left( \dfrac{3\pi }{4} \right) \right)$.
Now we will simplify the above expression, then we will get
$\Rightarrow LHS=2\sin \left( \dfrac{\pi }{4} \right)\sin x$.
We know that$\sin \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}$. Now we will use it for above expression, then
$\Rightarrow LHS=2\left( \dfrac{1}{\sqrt{2}} \right)\sin x$.
Now we will simplify the above expression, then we will have
$\begin{align}
& \Rightarrow LHS=\sqrt{2}\sin x \\
& \therefore LHS=RHS \\
\end{align}$.
Note:
For this problem we also use the simple method to get the result. In advanced trigonometry we have the formula $\cos \left( A+B \right)-\cos \left( A-B \right)=-2\sin A\sin B$. We will use this formula directly and substitute all the values we have in the above formula and simplify it to get the result.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Write a letter to the principal requesting him to grant class 10 english CBSE

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

