
Prove that $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=\cos \theta $ .
Answer
568.5k+ views
Hint: In this question, we need to prove the trigonometric function $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right) $ to be equal to $ \cos \theta $ . For this, we will use the formula of addition and subtraction of angles in the cosine function to evaluate our answer. We will also use a trigonometric ratio table to find the values of $ \cos {{60}^{\circ }} $ . Formula of cosine that we will use are:
\[\begin{align}
& \left( i \right)\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
& \left( ii \right)\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B \\
\end{align}\]
Complete step by step answer:
Here we are given the equation as $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=\cos \theta $ .
We need to prove the left side to be equal to the right side. For this, let us first pick the left side.
We have $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right) $ .
As we can see first term is in the form of cos(A+B) and second term is in the form of cos(A-B). So we can apply the formula of addition and subtraction of angles in cosine function given by,
$ \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\text{ and }\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B $ .
Here $ A={{60}^{\circ }}\text{ and }B=\theta $ we get,
$ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}\cos \theta -\sin {{60}^{\circ }}\sin \theta +\cos {{60}^{\circ }}\cos \theta +\sin {{60}^{\circ }}\sin \theta $ .
Cancelling $ \sin {{60}^{\circ }}\sin \theta $ we get,
$ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=2\cos {{60}^{\circ }}\cos \theta $ .
From the trigonometric ratio table, we know that $ \cos {{60}^{\circ }}=\dfrac{1}{2} $ so putting in the values of $ \cos {{60}^{\circ }} $ in above equation we get,
$ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=2\times \dfrac{1}{2}\times \cos \theta $ .
Cancelling 2 with 2 we get, $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=\cos \theta $ .
Which is equal to the right hand side of the given equation.
Hence proved.
Note:
Students should take care of the signs while solving this sum. Keep in mind all the trigonometric properties and identities. Student can solve this sum in following way also,
We are given left side as, $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right) $ .
As we can see, it is in the form cosC+cosD. So let us apply the formula of cosine angles given by $ \cos C+\cos D=\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{D-C}{2} \right) $ . Here, $ C={{60}^{\circ }}\text{ and }D=\theta $ we get,
$ \begin{align}
& \Rightarrow \cos \left( \dfrac{{{60}^{\circ }}+\theta +{{60}^{\circ }}-\theta }{2} \right)\cos \left( \dfrac{{{60}^{\circ }}+\theta -{{60}^{\circ }}+\theta }{2} \right) \\
& \Rightarrow \cos \left( \dfrac{{{120}^{\circ }}}{2} \right)\cos \left( \dfrac{2\theta }{2} \right) \\
& \Rightarrow \cos {{60}^{\circ }}\cos \theta \\
\end{align} $
Putting in the values of $ \cos {{60}^{\circ }}=\dfrac{1}{2} $ we get, $ \cos \theta $ .
Which is the right side.
Hence proved.
\[\begin{align}
& \left( i \right)\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B \\
& \left( ii \right)\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B \\
\end{align}\]
Complete step by step answer:
Here we are given the equation as $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=\cos \theta $ .
We need to prove the left side to be equal to the right side. For this, let us first pick the left side.
We have $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right) $ .
As we can see first term is in the form of cos(A+B) and second term is in the form of cos(A-B). So we can apply the formula of addition and subtraction of angles in cosine function given by,
$ \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\text{ and }\cos \left( A-B \right)=\cos A\cos B+\sin A\sin B $ .
Here $ A={{60}^{\circ }}\text{ and }B=\theta $ we get,
$ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=\cos {{60}^{\circ }}\cos \theta -\sin {{60}^{\circ }}\sin \theta +\cos {{60}^{\circ }}\cos \theta +\sin {{60}^{\circ }}\sin \theta $ .
Cancelling $ \sin {{60}^{\circ }}\sin \theta $ we get,
$ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=2\cos {{60}^{\circ }}\cos \theta $ .
From the trigonometric ratio table, we know that $ \cos {{60}^{\circ }}=\dfrac{1}{2} $ so putting in the values of $ \cos {{60}^{\circ }} $ in above equation we get,
$ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=2\times \dfrac{1}{2}\times \cos \theta $ .
Cancelling 2 with 2 we get, $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right)=\cos \theta $ .
Which is equal to the right hand side of the given equation.
Hence proved.
Note:
Students should take care of the signs while solving this sum. Keep in mind all the trigonometric properties and identities. Student can solve this sum in following way also,
We are given left side as, $ \cos \left( {{60}^{\circ }}+\theta \right)+\cos \left( {{60}^{\circ }}-\theta \right) $ .
As we can see, it is in the form cosC+cosD. So let us apply the formula of cosine angles given by $ \cos C+\cos D=\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{D-C}{2} \right) $ . Here, $ C={{60}^{\circ }}\text{ and }D=\theta $ we get,
$ \begin{align}
& \Rightarrow \cos \left( \dfrac{{{60}^{\circ }}+\theta +{{60}^{\circ }}-\theta }{2} \right)\cos \left( \dfrac{{{60}^{\circ }}+\theta -{{60}^{\circ }}+\theta }{2} \right) \\
& \Rightarrow \cos \left( \dfrac{{{120}^{\circ }}}{2} \right)\cos \left( \dfrac{2\theta }{2} \right) \\
& \Rightarrow \cos {{60}^{\circ }}\cos \theta \\
\end{align} $
Putting in the values of $ \cos {{60}^{\circ }}=\dfrac{1}{2} $ we get, $ \cos \theta $ .
Which is the right side.
Hence proved.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

