
Prove that: $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta $
Answer
584.4k+ views
Hint: Before attempting this question prior knowledge of trigonometric identities is must, remember to use trigonometric identities $\sec \theta = \dfrac{1}{{\cos \theta }}$ use this information to approach the solution of the question.
Complete step-by-step solution:
According to the given information we have trigonometric equation $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta $ to prove the L.H.S = R.H.S
Let first prove $\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta $ here L.H.S is $\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right)$ and R.H.S is $2\sec 2\theta $
Since we know that $\sec \theta = \dfrac{1}{{\cos \theta }}$
Therefore $\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}}$
L.H.S = $\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}}$
Multiplying and dividing by 2 we get
L.H.S = $\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}$
L.H.S = $\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}$
By the formula 2 Cos A Cos B = Cos (A+B) + Cos (A – B) we get
L.H.S = $\dfrac{2}{{\cos \left( {\dfrac{\pi }{4} + \theta + \dfrac{\pi }{4} - \theta } \right) + \cos \left( {\dfrac{\pi }{4} + \theta - \dfrac{\pi }{4} + \theta } \right)}}$
L.H.S = $\dfrac{2}{{\cos \dfrac{\pi }{2} + \cos 2\theta }}$
Since we know that $\cos \dfrac{\pi }{2}$ = 0
Therefore L.H.S = $\dfrac{2}{{\cos 2\theta }}$
Since we know that $\sec \theta = \dfrac{1}{{\cos \theta }}$
So, L.H.S = $2\sec 2\theta $ (equation 1)
So, L.H.S is equal to R.H.S
Now taking $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right)$ as L.H.S and $2\sec 2\theta $ as R.H.S
Since we know that $\cos ec\theta = \dfrac{1}{{\sin \theta }}$
Therefore L.H.S = $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{1}{{\sin \left( {\dfrac{\pi }{4} + \theta } \right)\sin \left( {\dfrac{\pi }{4} - \theta } \right)}}$
Multiplying and dividing by 2 we get
L.H.S = $\dfrac{1}{{\sin \left( {\dfrac{\pi }{4} + \theta } \right)\sin \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}$
Since we know that 2 Sin A Sin B = Cos (A – B) – Cos (A + B)
Therefore L.H.S = $\dfrac{2}{{\cos \left( {\dfrac{\pi }{4} + \theta - \dfrac{\pi }{4} + \theta } \right) - \cos \left( {\dfrac{\pi }{4} + \theta + \dfrac{\pi }{4} - \theta } \right)}}$
$ \Rightarrow $L.H.S = $\dfrac{2}{{\cos 2\theta - \cos \dfrac{\pi }{2} }}$
Since we know that $\cos \dfrac{\pi }{2}$ = 0
Therefore L.H.S = $\dfrac{2}{{\cos 2\theta }}$
Since we know that $\sec \theta = \dfrac{1}{{\cos \theta }}$
So, L.H.S = $2\sec 2\theta $ (equation 2)
So, L.H.S is equal to R.H.S
By the equation 1 and equation 2 we can say that
$\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right)$
Hence $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta $ is proved
Note: The above question was totally based on the concept of trigonometry and its identities which can be explained as the concept which relates the sides and the angle of a right-angled triangle whereas the trigonometric identities are equalities which consist of trigonometric identities like sin theta, cos theta, etc. which are true for every occurring variable in such cases where sides of both are well defined.
Complete step-by-step solution:
According to the given information we have trigonometric equation $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta $ to prove the L.H.S = R.H.S
Let first prove $\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta $ here L.H.S is $\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right)$ and R.H.S is $2\sec 2\theta $
Since we know that $\sec \theta = \dfrac{1}{{\cos \theta }}$
Therefore $\sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}}$
L.H.S = $\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}}$
Multiplying and dividing by 2 we get
L.H.S = $\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}$
L.H.S = $\dfrac{1}{{\cos \left( {\dfrac{\pi }{4} + \theta } \right)\cos \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}$
By the formula 2 Cos A Cos B = Cos (A+B) + Cos (A – B) we get
L.H.S = $\dfrac{2}{{\cos \left( {\dfrac{\pi }{4} + \theta + \dfrac{\pi }{4} - \theta } \right) + \cos \left( {\dfrac{\pi }{4} + \theta - \dfrac{\pi }{4} + \theta } \right)}}$
L.H.S = $\dfrac{2}{{\cos \dfrac{\pi }{2} + \cos 2\theta }}$
Since we know that $\cos \dfrac{\pi }{2}$ = 0
Therefore L.H.S = $\dfrac{2}{{\cos 2\theta }}$
Since we know that $\sec \theta = \dfrac{1}{{\cos \theta }}$
So, L.H.S = $2\sec 2\theta $ (equation 1)
So, L.H.S is equal to R.H.S
Now taking $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right)$ as L.H.S and $2\sec 2\theta $ as R.H.S
Since we know that $\cos ec\theta = \dfrac{1}{{\sin \theta }}$
Therefore L.H.S = $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \dfrac{1}{{\sin \left( {\dfrac{\pi }{4} + \theta } \right)\sin \left( {\dfrac{\pi }{4} - \theta } \right)}}$
Multiplying and dividing by 2 we get
L.H.S = $\dfrac{1}{{\sin \left( {\dfrac{\pi }{4} + \theta } \right)\sin \left( {\dfrac{\pi }{4} - \theta } \right)}} \times \dfrac{2}{2}$
Since we know that 2 Sin A Sin B = Cos (A – B) – Cos (A + B)
Therefore L.H.S = $\dfrac{2}{{\cos \left( {\dfrac{\pi }{4} + \theta - \dfrac{\pi }{4} + \theta } \right) - \cos \left( {\dfrac{\pi }{4} + \theta + \dfrac{\pi }{4} - \theta } \right)}}$
$ \Rightarrow $L.H.S = $\dfrac{2}{{\cos 2\theta - \cos \dfrac{\pi }{2} }}$
Since we know that $\cos \dfrac{\pi }{2}$ = 0
Therefore L.H.S = $\dfrac{2}{{\cos 2\theta }}$
Since we know that $\sec \theta = \dfrac{1}{{\cos \theta }}$
So, L.H.S = $2\sec 2\theta $ (equation 2)
So, L.H.S is equal to R.H.S
By the equation 1 and equation 2 we can say that
$\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right)$
Hence $\cos ec\left( {\dfrac{\pi }{4} + \theta } \right)\cos ec\left( {\dfrac{\pi }{4} - \theta } \right) = \sec \left( {\dfrac{\pi }{4} + \theta } \right)\sec \left( {\dfrac{\pi }{4} - \theta } \right) = 2\sec 2\theta $ is proved
Note: The above question was totally based on the concept of trigonometry and its identities which can be explained as the concept which relates the sides and the angle of a right-angled triangle whereas the trigonometric identities are equalities which consist of trigonometric identities like sin theta, cos theta, etc. which are true for every occurring variable in such cases where sides of both are well defined.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

