
Prove that: \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
Answer
580.8k+ views
Hint:
We will choose the left hand side, and then simplify it using the formula, \[\cos 2x\; = 2{\cos ^2}x-1\] with 3x in place of x, and then we use the formula \[4{\cos ^3}x-3\cos x = \cos 3x\], and then we simplify to reach to our desired result.
Complete step by step solution:
Given \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
R.H.S:
\[\cos \left( {6x} \right)\]
So, we have
\[ = \cos 2\left( {3x} \right)\]
On using, \[\cos 2x\; = 2{\cos ^2}x-1\] , we get,
\[ = 2co{s^2}\left( {3x} \right) - 1\]
Now we can write \[{\cos ^n}x = {(\cos x)^n}\] ,
So we get,
\[ = 2{\left( {\cos \left( {3x} \right)} \right)^2}-1\]
Now using, \[4{\cos ^3}x-3\cos x = \cos 3x\] , we get,
\[\; = 2{\left( {4{{\cos }^3}x - 3\cos x} \right)^2} - 1\]
On using \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] , we get,
\[\; = 2\left( {{{(4{{\cos }^3}x)}^2}-2.4{{\cos }^3} \times 3\cos x + {{(3\cos x)}^2}} \right) - 1\]
On expanding we get,
\[\; = 2\left( {16{{\cos }^6}x-24{{\cos }^4}x + 9{{\cos }^2}x} \right)-1\]
On opening the bracket, we get,
\[ = 32{\cos ^6}x-48{\cos ^4}x + 18{\cos ^2}x-1\]
So, L.H.S. = R.H.S.
i.e., \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
Hence, Proved.
Note:
The formulas used here are to be taken care of altogether. The formula used \[\cos 2x\; = 2{\cos ^2}x - 1\] and \[4{\cos ^3}x - 3\cos x = \cos 3x\] are to be remembered.
It is an easy problem you just need to rearrange terms and apply the correct formulas.
We will choose the left hand side, and then simplify it using the formula, \[\cos 2x\; = 2{\cos ^2}x-1\] with 3x in place of x, and then we use the formula \[4{\cos ^3}x-3\cos x = \cos 3x\], and then we simplify to reach to our desired result.
Complete step by step solution:
Given \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
R.H.S:
\[\cos \left( {6x} \right)\]
So, we have
\[ = \cos 2\left( {3x} \right)\]
On using, \[\cos 2x\; = 2{\cos ^2}x-1\] , we get,
\[ = 2co{s^2}\left( {3x} \right) - 1\]
Now we can write \[{\cos ^n}x = {(\cos x)^n}\] ,
So we get,
\[ = 2{\left( {\cos \left( {3x} \right)} \right)^2}-1\]
Now using, \[4{\cos ^3}x-3\cos x = \cos 3x\] , we get,
\[\; = 2{\left( {4{{\cos }^3}x - 3\cos x} \right)^2} - 1\]
On using \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] , we get,
\[\; = 2\left( {{{(4{{\cos }^3}x)}^2}-2.4{{\cos }^3} \times 3\cos x + {{(3\cos x)}^2}} \right) - 1\]
On expanding we get,
\[\; = 2\left( {16{{\cos }^6}x-24{{\cos }^4}x + 9{{\cos }^2}x} \right)-1\]
On opening the bracket, we get,
\[ = 32{\cos ^6}x-48{\cos ^4}x + 18{\cos ^2}x-1\]
So, L.H.S. = R.H.S.
i.e., \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
Hence, Proved.
Note:
The formulas used here are to be taken care of altogether. The formula used \[\cos 2x\; = 2{\cos ^2}x - 1\] and \[4{\cos ^3}x - 3\cos x = \cos 3x\] are to be remembered.
It is an easy problem you just need to rearrange terms and apply the correct formulas.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

