
Prove that: \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
Answer
562.5k+ views
Hint:
We will choose the left hand side, and then simplify it using the formula, \[\cos 2x\; = 2{\cos ^2}x-1\] with 3x in place of x, and then we use the formula \[4{\cos ^3}x-3\cos x = \cos 3x\], and then we simplify to reach to our desired result.
Complete step by step solution:
Given \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
R.H.S:
\[\cos \left( {6x} \right)\]
So, we have
\[ = \cos 2\left( {3x} \right)\]
On using, \[\cos 2x\; = 2{\cos ^2}x-1\] , we get,
\[ = 2co{s^2}\left( {3x} \right) - 1\]
Now we can write \[{\cos ^n}x = {(\cos x)^n}\] ,
So we get,
\[ = 2{\left( {\cos \left( {3x} \right)} \right)^2}-1\]
Now using, \[4{\cos ^3}x-3\cos x = \cos 3x\] , we get,
\[\; = 2{\left( {4{{\cos }^3}x - 3\cos x} \right)^2} - 1\]
On using \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] , we get,
\[\; = 2\left( {{{(4{{\cos }^3}x)}^2}-2.4{{\cos }^3} \times 3\cos x + {{(3\cos x)}^2}} \right) - 1\]
On expanding we get,
\[\; = 2\left( {16{{\cos }^6}x-24{{\cos }^4}x + 9{{\cos }^2}x} \right)-1\]
On opening the bracket, we get,
\[ = 32{\cos ^6}x-48{\cos ^4}x + 18{\cos ^2}x-1\]
So, L.H.S. = R.H.S.
i.e., \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
Hence, Proved.
Note:
The formulas used here are to be taken care of altogether. The formula used \[\cos 2x\; = 2{\cos ^2}x - 1\] and \[4{\cos ^3}x - 3\cos x = \cos 3x\] are to be remembered.
It is an easy problem you just need to rearrange terms and apply the correct formulas.
We will choose the left hand side, and then simplify it using the formula, \[\cos 2x\; = 2{\cos ^2}x-1\] with 3x in place of x, and then we use the formula \[4{\cos ^3}x-3\cos x = \cos 3x\], and then we simplify to reach to our desired result.
Complete step by step solution:
Given \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
R.H.S:
\[\cos \left( {6x} \right)\]
So, we have
\[ = \cos 2\left( {3x} \right)\]
On using, \[\cos 2x\; = 2{\cos ^2}x-1\] , we get,
\[ = 2co{s^2}\left( {3x} \right) - 1\]
Now we can write \[{\cos ^n}x = {(\cos x)^n}\] ,
So we get,
\[ = 2{\left( {\cos \left( {3x} \right)} \right)^2}-1\]
Now using, \[4{\cos ^3}x-3\cos x = \cos 3x\] , we get,
\[\; = 2{\left( {4{{\cos }^3}x - 3\cos x} \right)^2} - 1\]
On using \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] , we get,
\[\; = 2\left( {{{(4{{\cos }^3}x)}^2}-2.4{{\cos }^3} \times 3\cos x + {{(3\cos x)}^2}} \right) - 1\]
On expanding we get,
\[\; = 2\left( {16{{\cos }^6}x-24{{\cos }^4}x + 9{{\cos }^2}x} \right)-1\]
On opening the bracket, we get,
\[ = 32{\cos ^6}x-48{\cos ^4}x + 18{\cos ^2}x-1\]
So, L.H.S. = R.H.S.
i.e., \[\cos 6x = 32{\cos ^6}x - 48{\cos ^4}x + 18{\cos ^2}x - 1\]
Hence, Proved.
Note:
The formulas used here are to be taken care of altogether. The formula used \[\cos 2x\; = 2{\cos ^2}x - 1\] and \[4{\cos ^3}x - 3\cos x = \cos 3x\] are to be remembered.
It is an easy problem you just need to rearrange terms and apply the correct formulas.
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

