
Prove that $ \cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 $ .
Answer
576.3k+ views
Hint: We can write $ \cos 510^\circ $ as $ \cos \left( {360 + 150} \right) $ and using the properties of $ {\rm{cosine}} $ we obtain some value. $ \cos \left( {330^\circ } \right) $ can be written as $ \cos \left( {360 - 30} \right) $ using $ {\rm{cosine}} $ properties we get some value. $ \sin \left( {390^\circ } \right) $ can be written as $ \sin \left( {360 + 30} \right) $ using $ \sin $ properties we get some values and $ \cos 120^\circ $ can be written as $ \cos \left( {90 + 30} \right) $ using $ \cos $ properties we get some values.
Complete step-by-step answer:
The value of $ \cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 $ .
We have $ \cos 510^\circ $ that $ 510 $ can be written as $ 360 $ and $ 150 $ . Also, $ 150 $ can be written in terms of $ 180 $ and $ 30 $ since the angle for $ 510 $ is not known so the angles of the terms will be equal.
We know the property for the $ \cos $ is $ \cos \left( {2\pi + \theta } \right) = \cos \left( \theta \right) $ .
On substituting value in the above formula that is $ \theta $ as $ 150 $ , we get,
$ \cos \left( {360 + 150} \right) $ which is $ \cos \left( {510} \right) $ . Now, let us use the property $ \cos \left( {2\pi + \theta } \right) = \cos \left( \theta \right) $ then we get,
$ \cos \left( {510} \right) = \cos \left( {360 + 150} \right) $
Then we will take the property of $ \cos $ that is $ \cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right) $ .
On substituting value of $ \pi $ as $ 180 $ and $ \theta $ as $ 30 $ .Then we get, $ \cos \left( {180 - 30} \right) $ which is $ \cos \left( {150} \right) $ . So,
$ \cos \left( {150} \right) = \cos \left( {180 - 30} \right) $
Now, let us use the property $ \cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right) $ then we get,
$ \cos \left( {180 - 30} \right) = - \cos \left( {30} \right) $
To find the value for $ \cos \left( {330} \right) $ we use the following property for $ \cos $ , which is, $ \cos \left( {2\pi - \theta } \right) = \cos \left( \theta \right) $
On substitute the value of $ \pi $ and take $ \theta $ as $ 30 $ then we obtain ,
$ \cos \left( {360 - 30} \right) $ which is equal to $ \cos \left( {330} \right) $ .
Hence, $ \cos \left( {330} \right) $ can be written as,
$ \cos \left( {330} \right) = \cos \left( {360 - 30} \right) $
On using the property $ \cos \left( {2\pi - \theta } \right) = \cos \left( \theta \right) $ , we get,
$ \cos \left( {360 - 30} \right) = \cos 30 $
To find the value for $ \sin \left( {390} \right) $ value,
We will use the property $ \sin \left( {2\pi + \theta } \right) = \sin \left( \theta \right) $ , then we get,
$ \begin{array}{c}
\sin \left( {390} \right) = \sin \left( {360 + 30} \right)\\
= \sin \left( {30} \right)
\end{array} $
To find the value for $ \cos \left( {120} \right) $ , we use the property that $ \cos \left( {\dfrac{\pi }{2} + 30} \right) = - \sin \left( {30} \right) $ , we get,
$ \begin{array}{c}
\cos \left( {120} \right) = \cos \left( {90 + 30} \right)\\
= - \sin \left( {30} \right)
\end{array} $
Putting all the values in the $ \cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ $ , and also by applying property that is $ {\cos ^2}\theta + {\sin ^2}\theta = 1 $ , we obtain,
$ \begin{array}{c}
- \cos 30 \times \cos 30 + \sin \left( {30} \right) \times \left( { - \sin \left( {30} \right)} \right) = - {\cos ^2}30 - {\sin ^2}30\\
= - \left( {{{\cos }^2}30 + {{\sin }^2}30} \right)\\
= - 1
\end{array} $
Hence, $ \cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 $ .
Note: please be careful with the properties of the trigonometric function that is $ \sin $ , $ \cos $ properties. This problem can be proved by substituting the values which are known since, the value of $ \sin \left( {30} \right) $ and $ \cos \left( {30} \right) $ is known that is $ \sin \left( {30} \right) = \dfrac{1}{2} $ and $ \cos \left( {30} \right) = \dfrac{{\sqrt 3 }}{2} $ .
Complete step-by-step answer:
The value of $ \cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 $ .
We have $ \cos 510^\circ $ that $ 510 $ can be written as $ 360 $ and $ 150 $ . Also, $ 150 $ can be written in terms of $ 180 $ and $ 30 $ since the angle for $ 510 $ is not known so the angles of the terms will be equal.
We know the property for the $ \cos $ is $ \cos \left( {2\pi + \theta } \right) = \cos \left( \theta \right) $ .
On substituting value in the above formula that is $ \theta $ as $ 150 $ , we get,
$ \cos \left( {360 + 150} \right) $ which is $ \cos \left( {510} \right) $ . Now, let us use the property $ \cos \left( {2\pi + \theta } \right) = \cos \left( \theta \right) $ then we get,
$ \cos \left( {510} \right) = \cos \left( {360 + 150} \right) $
Then we will take the property of $ \cos $ that is $ \cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right) $ .
On substituting value of $ \pi $ as $ 180 $ and $ \theta $ as $ 30 $ .Then we get, $ \cos \left( {180 - 30} \right) $ which is $ \cos \left( {150} \right) $ . So,
$ \cos \left( {150} \right) = \cos \left( {180 - 30} \right) $
Now, let us use the property $ \cos \left( {\pi - \theta } \right) = - \cos \left( \theta \right) $ then we get,
$ \cos \left( {180 - 30} \right) = - \cos \left( {30} \right) $
To find the value for $ \cos \left( {330} \right) $ we use the following property for $ \cos $ , which is, $ \cos \left( {2\pi - \theta } \right) = \cos \left( \theta \right) $
On substitute the value of $ \pi $ and take $ \theta $ as $ 30 $ then we obtain ,
$ \cos \left( {360 - 30} \right) $ which is equal to $ \cos \left( {330} \right) $ .
Hence, $ \cos \left( {330} \right) $ can be written as,
$ \cos \left( {330} \right) = \cos \left( {360 - 30} \right) $
On using the property $ \cos \left( {2\pi - \theta } \right) = \cos \left( \theta \right) $ , we get,
$ \cos \left( {360 - 30} \right) = \cos 30 $
To find the value for $ \sin \left( {390} \right) $ value,
We will use the property $ \sin \left( {2\pi + \theta } \right) = \sin \left( \theta \right) $ , then we get,
$ \begin{array}{c}
\sin \left( {390} \right) = \sin \left( {360 + 30} \right)\\
= \sin \left( {30} \right)
\end{array} $
To find the value for $ \cos \left( {120} \right) $ , we use the property that $ \cos \left( {\dfrac{\pi }{2} + 30} \right) = - \sin \left( {30} \right) $ , we get,
$ \begin{array}{c}
\cos \left( {120} \right) = \cos \left( {90 + 30} \right)\\
= - \sin \left( {30} \right)
\end{array} $
Putting all the values in the $ \cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ $ , and also by applying property that is $ {\cos ^2}\theta + {\sin ^2}\theta = 1 $ , we obtain,
$ \begin{array}{c}
- \cos 30 \times \cos 30 + \sin \left( {30} \right) \times \left( { - \sin \left( {30} \right)} \right) = - {\cos ^2}30 - {\sin ^2}30\\
= - \left( {{{\cos }^2}30 + {{\sin }^2}30} \right)\\
= - 1
\end{array} $
Hence, $ \cos 510^\circ \cos 330^\circ + \sin 390^\circ \cos 120^\circ = - 1 $ .
Note: please be careful with the properties of the trigonometric function that is $ \sin $ , $ \cos $ properties. This problem can be proved by substituting the values which are known since, the value of $ \sin \left( {30} \right) $ and $ \cos \left( {30} \right) $ is known that is $ \sin \left( {30} \right) = \dfrac{1}{2} $ and $ \cos \left( {30} \right) = \dfrac{{\sqrt 3 }}{2} $ .
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

