
Prove that \[\cos {{35}^{\circ }}+\cos {{85}^{\circ }}+\cos {{155}^{\circ }}=0\].
Answer
525.9k+ views
Hint: In order to find solution to this problem, we will use compound angle formula that is $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cdot \cos \left( \dfrac{A-B}{2} \right)$ in our trigonometric equation to prove the right-hand side. First, we will use our compound angle formula in our two terms and then after solving it we will get our answer.
Complete step-by-step solution:
We have our trigonometric equation as:
\[\Rightarrow \cos {{35}^{\circ }}+\cos {{85}^{\circ }}+\cos {{155}^{\circ }}\]
On applying compound angle formula in our above trigonometric equation and taking $\cos A=\cos {{35}^{\circ }}$ and $\cos B=\cos {{85}^{\circ }}$, we get our equation as:
\[\Rightarrow 2\cos \left( \dfrac{{{35}^{\circ }}+{{85}^{\circ }}}{2} \right)\cdot \cos \left( \dfrac{{{35}^{\circ }}-{{85}^{\circ }}}{2} \right)+\cos {{155}^{\circ }}\]
On simplification, we get our equation as:
\[\Rightarrow 2\cos \left( \dfrac{{{120}^{\circ }}}{2} \right)\cdot \cos \left( \dfrac{-{{50}^{\circ }}}{2} \right)+\cos {{155}^{\circ }}\]
On simplifying, we get our equation as:
\[\Rightarrow 2\cos \left( {{60}^{\circ }} \right)\cdot \cos \left( -{{25}^{\circ }} \right)+\cos {{155}^{\circ }}\]
As we know that $\cos {{60}^{\circ }}=\dfrac{1}{2}$ from trigonometric functions.
Therefore, on applying in our equation, we get:
\[\Rightarrow 2\times \dfrac{1}{2}\cdot \cos \left( -{{25}^{\circ }} \right)+\cos {{155}^{\circ }}\]
On simplifying, we get:
\[\Rightarrow \cos \left( -{{25}^{\circ }} \right)+\cos {{155}^{\circ }}\]
As we know the rule, $\cos \left( -A \right)=\cos A$.
Therefore, on applying in our trigonometric equation, we get:
\[\Rightarrow \cos \left( {{25}^{\circ }} \right)+\cos {{155}^{\circ }}\]
Now, as we can see that we can again apply compound angle formula, therefore, we will use compound angle formula.
$\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cdot \cos \left( \dfrac{A-B}{2} \right)$
On applying, we get:
$\Rightarrow 2\cos \left( \dfrac{{{25}^{\circ }}+{{155}^{\circ }}}{2} \right)\cdot \cos \left( \dfrac{{{25}^{\circ }}-{{155}^{\circ }}}{2} \right)$
Now, on simplifying our equation, we get:
$\Rightarrow 2\cos \left( \dfrac{{{180}^{\circ }}}{2} \right)\cdot \cos \left( \dfrac{-{{130}^{\circ }}}{2} \right)$
On simplifying, we get:
$\Rightarrow 2\cos \left( {{90}^{\circ }} \right)\cdot \cos \left( -{{65}^{\circ }} \right)$
Now, as we know that $\cos {{90}^{\circ }}=0$ from trigonometric functions.
Therefore, on applying in our equation, we get:
$\Rightarrow 2\left( 0 \right)\cdot \cos \left( -{{65}^{\circ }} \right)$
On simplifying, we get:
$\Rightarrow 0\cdot \cos \left( -{{65}^{\circ }} \right)$
On further simplification, we get our solution as:
$\Rightarrow 0$, which is equal to the right-hand side, hence proved.
Therefore, we can say that \[\cos {{35}^{\circ }}+\cos {{85}^{\circ }}+\cos {{155}^{\circ }}=0\].
Note: There are three basic trigonometry functions are Sine, Cosine and Tangent.
The angles of sine, cosine, and tangent are the primary classification of functions of trigonometry. And the three functions which are cotangent, secant and cosecant can be derived from the primary functions.
In order to solve trigonometric function problems, we have to be familiar with the concepts of trigonometric functions.
Complete step-by-step solution:
We have our trigonometric equation as:
\[\Rightarrow \cos {{35}^{\circ }}+\cos {{85}^{\circ }}+\cos {{155}^{\circ }}\]
On applying compound angle formula in our above trigonometric equation and taking $\cos A=\cos {{35}^{\circ }}$ and $\cos B=\cos {{85}^{\circ }}$, we get our equation as:
\[\Rightarrow 2\cos \left( \dfrac{{{35}^{\circ }}+{{85}^{\circ }}}{2} \right)\cdot \cos \left( \dfrac{{{35}^{\circ }}-{{85}^{\circ }}}{2} \right)+\cos {{155}^{\circ }}\]
On simplification, we get our equation as:
\[\Rightarrow 2\cos \left( \dfrac{{{120}^{\circ }}}{2} \right)\cdot \cos \left( \dfrac{-{{50}^{\circ }}}{2} \right)+\cos {{155}^{\circ }}\]
On simplifying, we get our equation as:
\[\Rightarrow 2\cos \left( {{60}^{\circ }} \right)\cdot \cos \left( -{{25}^{\circ }} \right)+\cos {{155}^{\circ }}\]
As we know that $\cos {{60}^{\circ }}=\dfrac{1}{2}$ from trigonometric functions.
Therefore, on applying in our equation, we get:
\[\Rightarrow 2\times \dfrac{1}{2}\cdot \cos \left( -{{25}^{\circ }} \right)+\cos {{155}^{\circ }}\]
On simplifying, we get:
\[\Rightarrow \cos \left( -{{25}^{\circ }} \right)+\cos {{155}^{\circ }}\]
As we know the rule, $\cos \left( -A \right)=\cos A$.
Therefore, on applying in our trigonometric equation, we get:
\[\Rightarrow \cos \left( {{25}^{\circ }} \right)+\cos {{155}^{\circ }}\]
Now, as we can see that we can again apply compound angle formula, therefore, we will use compound angle formula.
$\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cdot \cos \left( \dfrac{A-B}{2} \right)$
On applying, we get:
$\Rightarrow 2\cos \left( \dfrac{{{25}^{\circ }}+{{155}^{\circ }}}{2} \right)\cdot \cos \left( \dfrac{{{25}^{\circ }}-{{155}^{\circ }}}{2} \right)$
Now, on simplifying our equation, we get:
$\Rightarrow 2\cos \left( \dfrac{{{180}^{\circ }}}{2} \right)\cdot \cos \left( \dfrac{-{{130}^{\circ }}}{2} \right)$
On simplifying, we get:
$\Rightarrow 2\cos \left( {{90}^{\circ }} \right)\cdot \cos \left( -{{65}^{\circ }} \right)$
Now, as we know that $\cos {{90}^{\circ }}=0$ from trigonometric functions.
Therefore, on applying in our equation, we get:
$\Rightarrow 2\left( 0 \right)\cdot \cos \left( -{{65}^{\circ }} \right)$
On simplifying, we get:
$\Rightarrow 0\cdot \cos \left( -{{65}^{\circ }} \right)$
On further simplification, we get our solution as:
$\Rightarrow 0$, which is equal to the right-hand side, hence proved.
Therefore, we can say that \[\cos {{35}^{\circ }}+\cos {{85}^{\circ }}+\cos {{155}^{\circ }}=0\].
Note: There are three basic trigonometry functions are Sine, Cosine and Tangent.
The angles of sine, cosine, and tangent are the primary classification of functions of trigonometry. And the three functions which are cotangent, secant and cosecant can be derived from the primary functions.
In order to solve trigonometric function problems, we have to be familiar with the concepts of trigonometric functions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

