
Prove that: \[{{\cos }^{2}}A+{{\cos }^{2}}B-2\cos A\cos B\cos \left( A+B \right)={{\sin }^{2}}\left( A+B \right)\]
Answer
610.2k+ views
Hint: For solving this question, first we apply cos(A+B) identity in the left-hand side. And apply all the trigonometry suitable formulas, we easily prove left hand side equal to right hand side.
Complete step-by-step answer:
Some of the useful trigonometric formula used in solving this problem:
cos (A + B) = cos A cos B − sin A sin B
sin (A + B) = sin A cos B + cos A sin B
${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we expand the left-hand side using the above-mentioned formula.
Considering the left-hand side of the question, we have
\[\Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B-2\cos A\cos B\cos \left( A+B \right)\]
Expand cos (A + B) by using the above identity, we get
\[\begin{align}
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B-2\cos A\cos B\left[ \cos A\cos B-\sin A\sin B \right] \\
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B-2\left( {{\cos }^{2}}A \right)\left( {{\cos }^{2}}B
\right)+2\left( \cos A \right)\left( \cos B \right)\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow {{\cos }^{2}}A-\left( {{\cos }^{2}}A \right)\left( {{\cos }^{2}}B \right)+{{\cos
}^{2}}B-\left( {{\cos }^{2}}A \right)\left( {{\cos }^{2}}B \right)+2\left( \cos A \right)\left( \cos B
\right)\left( \sin A \right)\left( \sin B \right) \\
\end{align}\]
Taking ${{\cos }^{2}}A$ common from 1 and 2 terms and ${{\cos }^{2}}B$ from 3 and 4 terms, we get
$\Rightarrow {{\cos }^{2}}A\left( 1-{{\cos }^{2}}B \right)+{{\cos }^{2}}B\left( 1-{{\cos }^{2}}A
\right)+2\left( \cos A \right)\left( \cos B \right)\left( \sin A \right)\left( \sin B \right)$
We know the identity, ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Therefore, $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $, using this we get
\[\begin{align}
& \Rightarrow {{\cos }^{2}}A{{\sin }^{2}}B+{{\cos }^{2}}B{{\sin }^{2}}A+2\left[ \left( \cos A \right)\left( \sin B \right) \right]\left[ \left( \sin A \right)\left( \cos B \right) \right] \\
& \Rightarrow {{\left( \cos A\sin B \right)}^{2}}+{{\left( \sin A\cos B \right)}^{2}}+2\left[ \left( \cos A \right)\left( \sin B \right) \right]\left[ \left( \sin A \right)\left( \cos B \right) \right] \\
\end{align}\]
We know the algebra identity ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$. Now, by using this identity, we can further simplify our expression as
$\Rightarrow {{\left( \cos A\sin B+\sin A\cos B \right)}^{2}}$
Now, by using the identity sin (A + B) = sin A cos B + cos A sin B, we can rewrite the above expression as
$\Rightarrow {{\sin }^{2}}\left( A+B \right)$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric formulas associated with different functions. This problem can be alternatively solved by expanding both cos (A+B) and sin (A+B) simultaneously and simplifying both the sides individually.
Complete step-by-step answer:
Some of the useful trigonometric formula used in solving this problem:
cos (A + B) = cos A cos B − sin A sin B
sin (A + B) = sin A cos B + cos A sin B
${{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1$
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we expand the left-hand side using the above-mentioned formula.
Considering the left-hand side of the question, we have
\[\Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B-2\cos A\cos B\cos \left( A+B \right)\]
Expand cos (A + B) by using the above identity, we get
\[\begin{align}
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B-2\cos A\cos B\left[ \cos A\cos B-\sin A\sin B \right] \\
& \Rightarrow {{\cos }^{2}}A+{{\cos }^{2}}B-2\left( {{\cos }^{2}}A \right)\left( {{\cos }^{2}}B
\right)+2\left( \cos A \right)\left( \cos B \right)\left( \sin A \right)\left( \sin B \right) \\
& \Rightarrow {{\cos }^{2}}A-\left( {{\cos }^{2}}A \right)\left( {{\cos }^{2}}B \right)+{{\cos
}^{2}}B-\left( {{\cos }^{2}}A \right)\left( {{\cos }^{2}}B \right)+2\left( \cos A \right)\left( \cos B
\right)\left( \sin A \right)\left( \sin B \right) \\
\end{align}\]
Taking ${{\cos }^{2}}A$ common from 1 and 2 terms and ${{\cos }^{2}}B$ from 3 and 4 terms, we get
$\Rightarrow {{\cos }^{2}}A\left( 1-{{\cos }^{2}}B \right)+{{\cos }^{2}}B\left( 1-{{\cos }^{2}}A
\right)+2\left( \cos A \right)\left( \cos B \right)\left( \sin A \right)\left( \sin B \right)$
We know the identity, ${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$. Therefore, $1-{{\cos }^{2}}\theta ={{\sin }^{2}}\theta $, using this we get
\[\begin{align}
& \Rightarrow {{\cos }^{2}}A{{\sin }^{2}}B+{{\cos }^{2}}B{{\sin }^{2}}A+2\left[ \left( \cos A \right)\left( \sin B \right) \right]\left[ \left( \sin A \right)\left( \cos B \right) \right] \\
& \Rightarrow {{\left( \cos A\sin B \right)}^{2}}+{{\left( \sin A\cos B \right)}^{2}}+2\left[ \left( \cos A \right)\left( \sin B \right) \right]\left[ \left( \sin A \right)\left( \cos B \right) \right] \\
\end{align}\]
We know the algebra identity ${{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}}$. Now, by using this identity, we can further simplify our expression as
$\Rightarrow {{\left( \cos A\sin B+\sin A\cos B \right)}^{2}}$
Now, by using the identity sin (A + B) = sin A cos B + cos A sin B, we can rewrite the above expression as
$\Rightarrow {{\sin }^{2}}\left( A+B \right)$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric formulas associated with different functions. This problem can be alternatively solved by expanding both cos (A+B) and sin (A+B) simultaneously and simplifying both the sides individually.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

