
Prove that: ${{\cos }^{2}}45{}^\circ -{{\sin }^{2}}15{}^\circ =\dfrac{\sqrt{3}}{4}$.
Answer
610.2k+ views
Hint: For solving this problem, first we convert the angle of sine in terms of 45 and 30 degrees by using subtraction. From the standard table of trigonometric functions, we know the value of sin 45 and 30 but not sin 15. Now, we expand the sine term by using formula sin (A-B). After simplification, wait to put the values from the table of trigonometric functions to obtain the final result.
Complete step-by-step answer:
Some of the useful trigonometric formula used in solving this problem:
sin (A - B) = sin A cos B - cos A sin B
The specific value of functions of sin and cos which are useful for this problem can be illustrated as:
\[\begin{align}
& \sin 30{}^\circ =\dfrac{1}{2} \\
& \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} \\
& \cos 30{}^\circ =\dfrac{\sqrt{3}}{2} \\
& \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} \\
\end{align}\]
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we convert the ${{\sin }^{2}}15{}^\circ \text{ to si}{{\text{n}}^{2}}\left( 45-30 \right){}^\circ $. Now, by using the above expansion, we can rewrite the left-hand side as
$\begin{align}
& \Rightarrow {{\cos }^{2}}45{}^\circ -\text{si}{{\text{n}}^{2}}\left( 45-30 \right){}^\circ \\
& \Rightarrow {{\cos }^{2}}45{}^\circ -{{\left( \sin 45{}^\circ \cos 30{}^\circ -\cos 45{}^\circ \sin 30{}^\circ \right)}^{2}} \\
\end{align}$
Now, we expand the terms by using the algebraic identity $\left( a-b \right)={{a}^{2}}+{{b}^{2}}-2ab$ to get
\[\Rightarrow {{\cos }^{2}}45{}^\circ -\left[ \left( {{\sin }^{2}}45{}^\circ \right)\left( {{\cos }^{2}}30{}^\circ \right)+\left( {{\cos }^{2}}45{}^\circ \right)\left( {{\sin }^{2}}30{}^\circ \right)-2\left( \sin 45{}^\circ \right)\left( \cos 30{}^\circ \right)\left( \cos 45{}^\circ \right)\left( \sin 30{}^\circ \right) \right]\]
Now, putting the values from the table, we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}-\left[ {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) \right] \\
& \Rightarrow \dfrac{1}{2}-\left[ \dfrac{1}{2}\times \dfrac{3}{4}+\dfrac{1}{2}\times \dfrac{1}{4}-2\times \dfrac{\sqrt{3}}{8} \right] \\
& \Rightarrow \dfrac{1}{2}-\left[ \dfrac{3}{8}+\dfrac{1}{8}-\dfrac{\sqrt{3}}{4} \right] \\
& \Rightarrow \dfrac{1}{2}-\left[ \dfrac{4}{8}-\dfrac{\sqrt{3}}{4} \right] \\
& \Rightarrow \dfrac{1}{2}-\dfrac{1}{2}+\dfrac{\sqrt{3}}{4} \\
& \Rightarrow \dfrac{\sqrt{3}}{4} \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric table and the trigonometric formulas associated with different functions. This problem can be alternatively solved by using the identity ${{\cos }^{2}}X-{{\sin }^{2}}Y=\cos \left( X+Y \right)\cos \left( X-Y \right)$. Now, putting X = 45 and Y = 15, we can easily obtain the same result.
Complete step-by-step answer:
Some of the useful trigonometric formula used in solving this problem:
sin (A - B) = sin A cos B - cos A sin B
The specific value of functions of sin and cos which are useful for this problem can be illustrated as:
\[\begin{align}
& \sin 30{}^\circ =\dfrac{1}{2} \\
& \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} \\
& \cos 30{}^\circ =\dfrac{\sqrt{3}}{2} \\
& \cos 45{}^\circ =\dfrac{1}{\sqrt{2}} \\
\end{align}\]
According to the problem statement, we consider the left-hand side of the equation for proving equivalence of both sides. First, we convert the ${{\sin }^{2}}15{}^\circ \text{ to si}{{\text{n}}^{2}}\left( 45-30 \right){}^\circ $. Now, by using the above expansion, we can rewrite the left-hand side as
$\begin{align}
& \Rightarrow {{\cos }^{2}}45{}^\circ -\text{si}{{\text{n}}^{2}}\left( 45-30 \right){}^\circ \\
& \Rightarrow {{\cos }^{2}}45{}^\circ -{{\left( \sin 45{}^\circ \cos 30{}^\circ -\cos 45{}^\circ \sin 30{}^\circ \right)}^{2}} \\
\end{align}$
Now, we expand the terms by using the algebraic identity $\left( a-b \right)={{a}^{2}}+{{b}^{2}}-2ab$ to get
\[\Rightarrow {{\cos }^{2}}45{}^\circ -\left[ \left( {{\sin }^{2}}45{}^\circ \right)\left( {{\cos }^{2}}30{}^\circ \right)+\left( {{\cos }^{2}}45{}^\circ \right)\left( {{\sin }^{2}}30{}^\circ \right)-2\left( \sin 45{}^\circ \right)\left( \cos 30{}^\circ \right)\left( \cos 45{}^\circ \right)\left( \sin 30{}^\circ \right) \right]\]
Now, putting the values from the table, we get
$\begin{align}
& \Rightarrow {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}-\left[ {{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}{{\left( \dfrac{1}{2} \right)}^{2}}-2\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{\sqrt{3}}{2} \right)\left( \dfrac{1}{\sqrt{2}} \right)\left( \dfrac{1}{2} \right) \right] \\
& \Rightarrow \dfrac{1}{2}-\left[ \dfrac{1}{2}\times \dfrac{3}{4}+\dfrac{1}{2}\times \dfrac{1}{4}-2\times \dfrac{\sqrt{3}}{8} \right] \\
& \Rightarrow \dfrac{1}{2}-\left[ \dfrac{3}{8}+\dfrac{1}{8}-\dfrac{\sqrt{3}}{4} \right] \\
& \Rightarrow \dfrac{1}{2}-\left[ \dfrac{4}{8}-\dfrac{\sqrt{3}}{4} \right] \\
& \Rightarrow \dfrac{1}{2}-\dfrac{1}{2}+\dfrac{\sqrt{3}}{4} \\
& \Rightarrow \dfrac{\sqrt{3}}{4} \\
\end{align}$
Hence, we proved the equivalence of both sides by considering the expression of the left side.
Note: Students must remember the trigonometric table and the trigonometric formulas associated with different functions. This problem can be alternatively solved by using the identity ${{\cos }^{2}}X-{{\sin }^{2}}Y=\cos \left( X+Y \right)\cos \left( X-Y \right)$. Now, putting X = 45 and Y = 15, we can easily obtain the same result.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

