
Prove that \[{{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)\]
Answer
607.8k+ views
Hint: In this question, we first need to consider the left hand side of the given expression and then using the properties of inverse trigonometric functions we need to convert the inverse cosine function into inverse sine function. Then use the sum of the inverse functions formula accordingly and simplify further to get the result.
Complete step-by-step answer:
\[{{\cos }^{-1}}x={{\sin }^{-1}}\sqrt{1-{{x}^{2}}}\]
\[{{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left\{ x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right\}\]
Now, from the given expression in the question we have
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)\]
Let us now consider the left hand side of the given expression
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
As we already know that from the properties of inverse trigonometric functions the relation between inverse cosine and inverse sine functions can be expressed as follows
\[{{\cos }^{-1}}x={{\sin }^{-1}}\sqrt{1-{{x}^{2}}}\]
Now, from this property on substituting the respective values we can write the expression as
\[\Rightarrow {{\sin }^{-1}}\left( \sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
Now, on further simplification we can write it as
\[\Rightarrow {{\sin }^{-1}}\left( \sqrt{\dfrac{169-144}{{{13}^{2}}}} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
Let us now further simplify the above expression
\[\Rightarrow {{\sin }^{-1}}\left( \sqrt{\dfrac{25}{{{13}^{2}}}} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
Now, the above expression can be rewritten as
\[\Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
As we already know that from the properties of inverse trigonometric functions the sum of two inverse sine functions can be written as follows
\[{{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left\{ x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right\}\]
Now, on substituting the respective values of x and y in the above equation we get,
Now, on comparison we get,
\[x=\dfrac{5}{13},y=\dfrac{3}{5}\]
Now, on further substitution of these values we get,
\[\Rightarrow {{\sin }^{-1}}\left\{ \dfrac{5}{13}\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}+\dfrac{3}{5}\sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \right\}\]
Let us now further simplify this accordingly
\[\Rightarrow {{\sin }^{-1}}\left\{ \dfrac{5}{13}\sqrt{\dfrac{25-9}{{{5}^{2}}}}+\dfrac{3}{5}\sqrt{\dfrac{169-25}{{{13}^{2}}}} \right\}\]
Now, on further simplification we get,
\[\Rightarrow {{\sin }^{-1}}\left\{ \dfrac{5}{13}\sqrt{\dfrac{16}{{{5}^{2}}}}+\dfrac{3}{5}\sqrt{\dfrac{144}{{{13}^{2}}}} \right\}\]
Now, this can be further written as
\[\Rightarrow {{\sin }^{-1}}\left\{ \dfrac{5}{13}\times \dfrac{4}{5}+\dfrac{3}{5}\times \dfrac{12}{13} \right\}\]
Now, on further simplification we get,
\[\begin{align}
& \Rightarrow {{\sin }^{-1}}\left\{ \dfrac{20}{65}+\dfrac{36}{65} \right\} \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{56}{65} \right) \\
\end{align}\]
Hence, proved that \[{{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)\]
Note:Instead of considering the left hand side we can also solve it by first rearranging the terms in the given expression by taking the inverse sine function on the left side to the right side and then solve it by using the formula of difference between two inverse sine functions. Then on further simplification we get the result.
It is important to note that while solving the expression on substituting the respective values we should not neglect any of the terms because it changes the corresponding expression and so the final result.
Complete step-by-step answer:
\[{{\cos }^{-1}}x={{\sin }^{-1}}\sqrt{1-{{x}^{2}}}\]
\[{{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left\{ x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right\}\]
Now, from the given expression in the question we have
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)\]
Let us now consider the left hand side of the given expression
\[\Rightarrow {{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
As we already know that from the properties of inverse trigonometric functions the relation between inverse cosine and inverse sine functions can be expressed as follows
\[{{\cos }^{-1}}x={{\sin }^{-1}}\sqrt{1-{{x}^{2}}}\]
Now, from this property on substituting the respective values we can write the expression as
\[\Rightarrow {{\sin }^{-1}}\left( \sqrt{1-{{\left( \dfrac{12}{13} \right)}^{2}}} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
Now, on further simplification we can write it as
\[\Rightarrow {{\sin }^{-1}}\left( \sqrt{\dfrac{169-144}{{{13}^{2}}}} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
Let us now further simplify the above expression
\[\Rightarrow {{\sin }^{-1}}\left( \sqrt{\dfrac{25}{{{13}^{2}}}} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
Now, the above expression can be rewritten as
\[\Rightarrow {{\sin }^{-1}}\left( \dfrac{5}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)\]
As we already know that from the properties of inverse trigonometric functions the sum of two inverse sine functions can be written as follows
\[{{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}\left\{ x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}} \right\}\]
Now, on substituting the respective values of x and y in the above equation we get,
Now, on comparison we get,
\[x=\dfrac{5}{13},y=\dfrac{3}{5}\]
Now, on further substitution of these values we get,
\[\Rightarrow {{\sin }^{-1}}\left\{ \dfrac{5}{13}\sqrt{1-{{\left( \dfrac{3}{5} \right)}^{2}}}+\dfrac{3}{5}\sqrt{1-{{\left( \dfrac{5}{13} \right)}^{2}}} \right\}\]
Let us now further simplify this accordingly
\[\Rightarrow {{\sin }^{-1}}\left\{ \dfrac{5}{13}\sqrt{\dfrac{25-9}{{{5}^{2}}}}+\dfrac{3}{5}\sqrt{\dfrac{169-25}{{{13}^{2}}}} \right\}\]
Now, on further simplification we get,
\[\Rightarrow {{\sin }^{-1}}\left\{ \dfrac{5}{13}\sqrt{\dfrac{16}{{{5}^{2}}}}+\dfrac{3}{5}\sqrt{\dfrac{144}{{{13}^{2}}}} \right\}\]
Now, this can be further written as
\[\Rightarrow {{\sin }^{-1}}\left\{ \dfrac{5}{13}\times \dfrac{4}{5}+\dfrac{3}{5}\times \dfrac{12}{13} \right\}\]
Now, on further simplification we get,
\[\begin{align}
& \Rightarrow {{\sin }^{-1}}\left\{ \dfrac{20}{65}+\dfrac{36}{65} \right\} \\
& \Rightarrow {{\sin }^{-1}}\left( \dfrac{56}{65} \right) \\
\end{align}\]
Hence, proved that \[{{\cos }^{-1}}\left( \dfrac{12}{13} \right)+{{\sin }^{-1}}\left( \dfrac{3}{5} \right)={{\sin }^{-1}}\left( \dfrac{56}{65} \right)\]
Note:Instead of considering the left hand side we can also solve it by first rearranging the terms in the given expression by taking the inverse sine function on the left side to the right side and then solve it by using the formula of difference between two inverse sine functions. Then on further simplification we get the result.
It is important to note that while solving the expression on substituting the respective values we should not neglect any of the terms because it changes the corresponding expression and so the final result.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

