
Prove that: $ \cos 18{}^\circ -\sin 18{}^\circ =\sqrt{2}\sin 27{}^\circ $
Answer
553.2k+ views
Hint: We know that $ \sin (90{}^\circ -\theta )=\cos \theta $ .
Use the identity $ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $ .
We also know that $ \sin (-\theta )=-\sin \theta $ .
Simplify the expression and use $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ .
Complete step by step answer:
We can write $ \sin 18{}^\circ =\sin (90{}^\circ -72{}^\circ )=\cos 72{}^\circ $ .
Therefore, the LHS $ \cos 18{}^\circ -\sin 18{}^\circ $ of the given relation becomes:
= $ \cos 18{}^\circ -\cos 72{}^\circ $
= $ \cos (2\times 9{}^\circ )-\cos (2\times 36{}^\circ ) $
Using the identity $ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $ , we get:
= $ -2\sin (9{}^\circ +36{}^\circ )\sin (9{}^\circ -36{}^\circ ) $
= $ -2\sin (45{}^\circ )\sin (-27{}^\circ ) $
Using $ \sin (-\theta )=-\sin \theta $ and $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ , we get:
= $ -2\times \dfrac{1}{\sqrt{2}}\times (-\sin 27{}^\circ ) $
Multiplying the numerator and the denominator by $ \sqrt{2} $ , we get:
= $ 2\times \dfrac{1\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}\times \sin 27{}^\circ $
= $ 2\times \dfrac{\sqrt{2}}{2}\times \sin 27{}^\circ $
= $ \sqrt{2}\times \sin 27{}^\circ $
= RHS
Hence, proved.
Note: $ \sin 18{}^\circ =\dfrac{\sqrt{5}-1}{4} $ , $ \cos 18{}^\circ =\dfrac{\sqrt{10+2\sqrt{5}}}{4} $ and $ \sin 72{}^\circ =\dfrac{\sqrt{10+2\sqrt{5}}}{4} $ .
The values of $ \sin \theta $ and $ \cos \theta $ are positive in the range $ 0{}^\circ <\theta <90{}^\circ $ .
$ \sin 2A+\sin 2B=2\sin (A+B)\cos (A-B) $
$ \sin 2A-\sin 2B=2\cos (A+B)\sin (A-B) $
$ \cos 2A+\cos 2B=2\cos (A+B)\cos (A-B) $
$ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $
Use the identity $ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $ .
We also know that $ \sin (-\theta )=-\sin \theta $ .
Simplify the expression and use $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ .
Complete step by step answer:
We can write $ \sin 18{}^\circ =\sin (90{}^\circ -72{}^\circ )=\cos 72{}^\circ $ .
Therefore, the LHS $ \cos 18{}^\circ -\sin 18{}^\circ $ of the given relation becomes:
= $ \cos 18{}^\circ -\cos 72{}^\circ $
= $ \cos (2\times 9{}^\circ )-\cos (2\times 36{}^\circ ) $
Using the identity $ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $ , we get:
= $ -2\sin (9{}^\circ +36{}^\circ )\sin (9{}^\circ -36{}^\circ ) $
= $ -2\sin (45{}^\circ )\sin (-27{}^\circ ) $
Using $ \sin (-\theta )=-\sin \theta $ and $ \sin 45{}^\circ =\dfrac{1}{\sqrt{2}} $ , we get:
= $ -2\times \dfrac{1}{\sqrt{2}}\times (-\sin 27{}^\circ ) $
Multiplying the numerator and the denominator by $ \sqrt{2} $ , we get:
= $ 2\times \dfrac{1\times \sqrt{2}}{\sqrt{2}\times \sqrt{2}}\times \sin 27{}^\circ $
= $ 2\times \dfrac{\sqrt{2}}{2}\times \sin 27{}^\circ $
= $ \sqrt{2}\times \sin 27{}^\circ $
= RHS
Hence, proved.
Note: $ \sin 18{}^\circ =\dfrac{\sqrt{5}-1}{4} $ , $ \cos 18{}^\circ =\dfrac{\sqrt{10+2\sqrt{5}}}{4} $ and $ \sin 72{}^\circ =\dfrac{\sqrt{10+2\sqrt{5}}}{4} $ .
The values of $ \sin \theta $ and $ \cos \theta $ are positive in the range $ 0{}^\circ <\theta <90{}^\circ $ .
$ \sin 2A+\sin 2B=2\sin (A+B)\cos (A-B) $
$ \sin 2A-\sin 2B=2\cos (A+B)\sin (A-B) $
$ \cos 2A+\cos 2B=2\cos (A+B)\cos (A-B) $
$ \cos 2A-\cos 2B=-2\sin (A+B)\sin (A-B) $
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

