
Prove that $\dfrac{\operatorname{sinA}-\operatorname{cosA}+1}{\operatorname{sinA}+\cos A-1}=\dfrac{1}{\sec A-\tan A}$
Answer
584.7k+ views
Hint: In question it is asked that, we have to find the value of $\sin \theta $ given that $\dfrac{\operatorname{sinA}-\operatorname{cosA}+1}{\operatorname{sinA}+\cos A-1}=\dfrac{1}{\sec A-\tan A}$.
So, to do so we will use identities and properties of trigonometric ratios such as $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$,$\sin \theta =\dfrac{1}{\operatorname{cosec}\theta }$ so as to prove LHS = RHS .
Complete step by step answer:
We know that \[sin\text{ }\theta \text{ },\text{ }cos\text{ }\theta \text{ },\text{ }tan\text{ }\theta \text{ },\text{ }cot\text{ }\theta \text{ },\text{ }sec\text{ }\theta \text{ }and\text{ }cosec\text{ }\theta \] are trigonometric function, where \[\theta \] is the angle made by the hypotenuse with the base of triangle.
In question, it is given that $\dfrac{\operatorname{sinA}-\operatorname{cosA}+1}{\operatorname{sinA}+\cos A-1}=\dfrac{1}{\sec A-\tan A}$.
So, first step to solve this question which will simplify the question, will be, we will rationalise the left hand side of $\dfrac{\operatorname{sinA}-\operatorname{cosA}+1}{\operatorname{sinA}+\cos A-1}=\dfrac{1}{\sec A-\tan A}$, by ( sinA + cosA + 1 ).
Rationalization in mathematics means multiplying numerator and denominator of fraction by same factor
So, on factorization we get
LHS = $\dfrac{(\operatorname{sinA}-\operatorname{cosA}+1)(\operatorname{sinA}+\cos A+1)}{(\operatorname{sinA}+\cos A-1)(\operatorname{sinA}+\cos A+1)}$
$=\dfrac{(\operatorname{sinA}-\operatorname{cosA}+1)(\operatorname{sinA}+\cos A+1)}{(\operatorname{sinA}+\cos A-1)(\operatorname{sinA}+\cos A+1)}$
On re-arranging terms we get
$=\dfrac{[(\operatorname{sinA}+1)-\operatorname{cosA}][(\operatorname{sinA}+1)+\operatorname{cosA}]}{[(\operatorname{sinA}+\cos A)-1][(\operatorname{sinA}+\cos A)+1]}$
Now, let sinA + 1 = a and cosA = b in numerator, so we can use algebraic identity $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$ in numerator.
So, we get $=\dfrac{{{(\operatorname{sinA}+1)}^{2}}-{{\cos }^{2}}A}{[(\operatorname{sinA}+\cos A)-1][(\operatorname{sinA}+\cos A)+1]}$
Now, let sinA + cosA = a and 1 = b in denominator, so we can use algebraic identity $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$ in denominator.
So, we get $=\dfrac{{{(\operatorname{sinA}+1)}^{2}}-{{\cos }^{2}}A}{{{(\operatorname{sinA}+\cos A)}^{2}}-{{1}^{2}}}$
Applying algebraic identity ${{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ in numerator and denominator, we get
$=\dfrac{({{\sin }^{2}}A+1+2\sin A)-{{\cos }^{2}}A}{({{\sin }^{2}}A+{{\cos }^{2}}A+2\sin A\cos A)-1}$
We know that ${{\cos }^{2}}A=1-si{{n}^{2}}A$, so we get
$=\dfrac{({{\sin }^{2}}A+1+2\sin A)-\left( 1-si{{n}^{2}}A \right)}{({{\sin }^{2}}A+{{\cos }^{2}}A+2\sin A\cos A)-1}$
On simplifying we get
$=\dfrac{({{\sin }^{2}}A+1+2\sin A)-1+si{{n}^{2}}A}{({{\sin }^{2}}A+{{\cos }^{2}}A+2\sin A\cos A)-1}$
Also, we know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$, so we get
$=\dfrac{({{\sin }^{2}}A+1+2\sin A)-1+si{{n}^{2}}A}{(1+2\sin A\cos A)-1}$
On simplifying, we get
$=\dfrac{2{{\sin }^{2}}A+2\sin A}{2\sin A\cos A}$
Taking factor 2sinA common from numerator, we get
$=\dfrac{2sinA(\operatorname{sinA}+1)}{2\sin A\cos A}$
On simplifying, we get
$=\dfrac{(\operatorname{sinA}+1)}{\cos A}$
Or, $=\dfrac{\operatorname{sinA}}{\cos A}+\dfrac{1}{\cos A}$
As we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$
So, $=\operatorname{tanA}+secA$
Multiplying numerator and denominator by $\operatorname{tanA}-secA$, we get
$=\dfrac{\left( \operatorname{tanA}+secA \right)\left( \operatorname{tanA}-secA \right)}{\operatorname{tanA}-secA}$
Using identity, $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$, we get
$=\dfrac{\left( {{\tan }^{2}}A-se{{c}^{2}}A \right)}{\operatorname{tanA}-secA}$,
we know that ${{\tan }^{2}}A-se{{c}^{2}}A=-1$
so, we get $=\dfrac{\left( -1 \right)}{\operatorname{tanA}-secA}$
or, $=\dfrac{1}{secA-\operatorname{tanA}}$
= RHS.
Note:
One must know all trigonometric identities, properties, and the relation between trigonometric functions. While solving the question always use the most appropriate substitution of trigonometric relation which directly leads to a result. There may be calculation mistakes in cross multiplication, so be careful while solving an expression.
So, to do so we will use identities and properties of trigonometric ratios such as $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$,$\sin \theta =\dfrac{1}{\operatorname{cosec}\theta }$ so as to prove LHS = RHS .
Complete step by step answer:
We know that \[sin\text{ }\theta \text{ },\text{ }cos\text{ }\theta \text{ },\text{ }tan\text{ }\theta \text{ },\text{ }cot\text{ }\theta \text{ },\text{ }sec\text{ }\theta \text{ }and\text{ }cosec\text{ }\theta \] are trigonometric function, where \[\theta \] is the angle made by the hypotenuse with the base of triangle.
In question, it is given that $\dfrac{\operatorname{sinA}-\operatorname{cosA}+1}{\operatorname{sinA}+\cos A-1}=\dfrac{1}{\sec A-\tan A}$.
So, first step to solve this question which will simplify the question, will be, we will rationalise the left hand side of $\dfrac{\operatorname{sinA}-\operatorname{cosA}+1}{\operatorname{sinA}+\cos A-1}=\dfrac{1}{\sec A-\tan A}$, by ( sinA + cosA + 1 ).
Rationalization in mathematics means multiplying numerator and denominator of fraction by same factor
So, on factorization we get
LHS = $\dfrac{(\operatorname{sinA}-\operatorname{cosA}+1)(\operatorname{sinA}+\cos A+1)}{(\operatorname{sinA}+\cos A-1)(\operatorname{sinA}+\cos A+1)}$
$=\dfrac{(\operatorname{sinA}-\operatorname{cosA}+1)(\operatorname{sinA}+\cos A+1)}{(\operatorname{sinA}+\cos A-1)(\operatorname{sinA}+\cos A+1)}$
On re-arranging terms we get
$=\dfrac{[(\operatorname{sinA}+1)-\operatorname{cosA}][(\operatorname{sinA}+1)+\operatorname{cosA}]}{[(\operatorname{sinA}+\cos A)-1][(\operatorname{sinA}+\cos A)+1]}$
Now, let sinA + 1 = a and cosA = b in numerator, so we can use algebraic identity $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$ in numerator.
So, we get $=\dfrac{{{(\operatorname{sinA}+1)}^{2}}-{{\cos }^{2}}A}{[(\operatorname{sinA}+\cos A)-1][(\operatorname{sinA}+\cos A)+1]}$
Now, let sinA + cosA = a and 1 = b in denominator, so we can use algebraic identity $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$ in denominator.
So, we get $=\dfrac{{{(\operatorname{sinA}+1)}^{2}}-{{\cos }^{2}}A}{{{(\operatorname{sinA}+\cos A)}^{2}}-{{1}^{2}}}$
Applying algebraic identity ${{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ in numerator and denominator, we get
$=\dfrac{({{\sin }^{2}}A+1+2\sin A)-{{\cos }^{2}}A}{({{\sin }^{2}}A+{{\cos }^{2}}A+2\sin A\cos A)-1}$
We know that ${{\cos }^{2}}A=1-si{{n}^{2}}A$, so we get
$=\dfrac{({{\sin }^{2}}A+1+2\sin A)-\left( 1-si{{n}^{2}}A \right)}{({{\sin }^{2}}A+{{\cos }^{2}}A+2\sin A\cos A)-1}$
On simplifying we get
$=\dfrac{({{\sin }^{2}}A+1+2\sin A)-1+si{{n}^{2}}A}{({{\sin }^{2}}A+{{\cos }^{2}}A+2\sin A\cos A)-1}$
Also, we know that ${{\sin }^{2}}A+{{\cos }^{2}}A=1$, so we get
$=\dfrac{({{\sin }^{2}}A+1+2\sin A)-1+si{{n}^{2}}A}{(1+2\sin A\cos A)-1}$
On simplifying, we get
$=\dfrac{2{{\sin }^{2}}A+2\sin A}{2\sin A\cos A}$
Taking factor 2sinA common from numerator, we get
$=\dfrac{2sinA(\operatorname{sinA}+1)}{2\sin A\cos A}$
On simplifying, we get
$=\dfrac{(\operatorname{sinA}+1)}{\cos A}$
Or, $=\dfrac{\operatorname{sinA}}{\cos A}+\dfrac{1}{\cos A}$
As we know that $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$ and $\sec \theta =\dfrac{1}{\cos \theta }$
So, $=\operatorname{tanA}+secA$
Multiplying numerator and denominator by $\operatorname{tanA}-secA$, we get
$=\dfrac{\left( \operatorname{tanA}+secA \right)\left( \operatorname{tanA}-secA \right)}{\operatorname{tanA}-secA}$
Using identity, $(a+b)(a-b)={{a}^{2}}-{{b}^{2}}$, we get
$=\dfrac{\left( {{\tan }^{2}}A-se{{c}^{2}}A \right)}{\operatorname{tanA}-secA}$,
we know that ${{\tan }^{2}}A-se{{c}^{2}}A=-1$
so, we get $=\dfrac{\left( -1 \right)}{\operatorname{tanA}-secA}$
or, $=\dfrac{1}{secA-\operatorname{tanA}}$
= RHS.
Note:
One must know all trigonometric identities, properties, and the relation between trigonometric functions. While solving the question always use the most appropriate substitution of trigonometric relation which directly leads to a result. There may be calculation mistakes in cross multiplication, so be careful while solving an expression.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

