
Prove that ${{b}_{yx}}\cdot {{b}_{xy}}={{\left\{ \rho \left( X,Y \right) \right\}}^{2}}$\[\]
Answer
564.6k+ views
Hint: We recall the definitions and formula of regression coefficients ${{b}_{xy}},{{b}_{yx}}$ in the regression analysis bivariate data $X,Y$ as the slopes of regression line. We recall the formula for correlation coefficient $\rho \left( X,Y \right)$ which is the ratio the ratio of covariance $COV\left( X,Y \right)$ of the bivariate population and product of standard deviations ${{\sigma }_{x}},{{\sigma }_{y}}$ of $X$ and $Y$. We proceed from the left hand side to prove the statement. \[\]
Complete step by step answer:
We know that mean of a population with $n$ data points $X={{x}_{1}},{{x}_{2}},...{{x}_{n}}$ is given by
\[\overline{X}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{i}}}\]
We know in regression analysis that in bivariate data two variables vary each other. It means if there are two variables $X,Y$ then $X$ may depend on $Y$ and also $Y$ may depend on $X.$ Let us take a set of $n$ data points $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),...,\left( {{x}_{n}},{{y}_{n}} \right)$. We use the least square method to find the regression lines to fit the data. Let us assume when $X={{x}_{1}},{{x}_{2}},...{{x}_{n}}$may depend on $Y={{y}_{1}},{{y}_{2}},{{y}_{3}},...,{{y}_{n}}$ we obtain equation of the regression line
\[X=c+dx\]
Here $c$ is the average value of $X$ when $Y$ is zero. We know that the slope of the above line is called the regression coefficient ${{b}_{xy}}$ which is given by
\[{{b}_{xy}}=\dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-n\overline{X}\overline{Y}}{\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}-n{{\left( \overline{X} \right)}^{2}}}}\]
We assume the equation of the regression line $Y$ may depend on $X$as
\[Y=ax+b\]
Here $a$ is the average value of $Y$ when $X$ is zero. Here the slope of the line is the regression coefficient ${{b}_{yx}}$ which is given by
\[{{b}_{yx}}=\dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-\overline{X}\overline{Y}}{\sum\limits_{i=1}^{n}{{{y}_{i}}^{2}}-n{{\left( \overline{Y} \right)}^{2}}}\]
The correlation coefficient $\rho \left( X,Y \right)$ of the population determines the degree of causality of $X$on $Y$ or $Y$on $X.$we know that it is the ratio of covariance $COV\left( X,Y \right)$ of the bivariate population and product of standard deviations of $X$ and $Y$. So it is given by
\[\rho \left( X,Y \right)=\dfrac{\text{COV}\left( X,Y \right)}{{{\sigma }_{x}}{{\sigma }_{y}}}=\dfrac{\sum{{{x}_{i}}{{y}_{i}}-n\overline{X}\overline{Y}}}{\sqrt{\sum{{{x}_{i}}^{2}-n{{\overline{X}}^{2}}}}\sqrt{\sum{{{y}_{i}}^{2}-n{{\overline{Y}}^{2}}}}}\]
We proceed from the left hand side of the statement ${{b}_{yx}}\cdot {{b}_{xy}}={{\left\{ \rho \left( X,Y \right) \right\}}^{2}}$
\[\begin{align}
& {{b}_{yx}}\cdot {{b}_{xy}}=\dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-n\overline{X}\overline{Y}}{\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}-n{{\left( \overline{X} \right)}^{2}}}}\times \dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-n\overline{X}\overline{Y}}{\sum\limits_{i=1}^{n}{{{y}_{i}}^{2}}-n{{\left( \overline{Y} \right)}^{2}}} \\
& ={{\left( \dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-n\overline{X}\overline{Y}}{\sqrt{\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}-n{{\left( \overline{X} \right)}^{2}}}\times \sum\limits_{i=1}^{n}{{{y}_{i}}^{2}}-n{{\left( \overline{Y} \right)}^{2}}}} \right)}^{2}}={{\left\{ \rho \left( X,Y \right) \right\}}^{2}} \\
\end{align}\]
Which is equal to the right hand side and hence the statement is proved.
Note: We can alternatively solve if we know the relation between regression coefficients ${{b}_{xy}},{{b}_{yx}}$ and standard deviation ${{\sigma }_{x}},{{\sigma }_{y}}$ as ${{b}_{xy}}=\rho \dfrac{{{\sigma }_{x}}}{{{\sigma }_{y}}},{{b}_{yx}}=\rho \dfrac{{{\sigma }_{y}}}{{{\sigma }_{x}}}$ and then proceed from left hand side. The proving statement can be written as the correlation coefficient in bivariate data is the geometric mean of regression coefficients.
Complete step by step answer:
We know that mean of a population with $n$ data points $X={{x}_{1}},{{x}_{2}},...{{x}_{n}}$ is given by
\[\overline{X}=\dfrac{1}{n}\sum\limits_{i=1}^{n}{{{x}_{i}}}\]
We know in regression analysis that in bivariate data two variables vary each other. It means if there are two variables $X,Y$ then $X$ may depend on $Y$ and also $Y$ may depend on $X.$ Let us take a set of $n$ data points $\left( {{x}_{1}},{{y}_{1}} \right),\left( {{x}_{2}},{{y}_{2}} \right),...,\left( {{x}_{n}},{{y}_{n}} \right)$. We use the least square method to find the regression lines to fit the data. Let us assume when $X={{x}_{1}},{{x}_{2}},...{{x}_{n}}$may depend on $Y={{y}_{1}},{{y}_{2}},{{y}_{3}},...,{{y}_{n}}$ we obtain equation of the regression line
\[X=c+dx\]
Here $c$ is the average value of $X$ when $Y$ is zero. We know that the slope of the above line is called the regression coefficient ${{b}_{xy}}$ which is given by
\[{{b}_{xy}}=\dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-n\overline{X}\overline{Y}}{\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}-n{{\left( \overline{X} \right)}^{2}}}}\]
We assume the equation of the regression line $Y$ may depend on $X$as
\[Y=ax+b\]
Here $a$ is the average value of $Y$ when $X$ is zero. Here the slope of the line is the regression coefficient ${{b}_{yx}}$ which is given by
\[{{b}_{yx}}=\dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-\overline{X}\overline{Y}}{\sum\limits_{i=1}^{n}{{{y}_{i}}^{2}}-n{{\left( \overline{Y} \right)}^{2}}}\]
The correlation coefficient $\rho \left( X,Y \right)$ of the population determines the degree of causality of $X$on $Y$ or $Y$on $X.$we know that it is the ratio of covariance $COV\left( X,Y \right)$ of the bivariate population and product of standard deviations of $X$ and $Y$. So it is given by
\[\rho \left( X,Y \right)=\dfrac{\text{COV}\left( X,Y \right)}{{{\sigma }_{x}}{{\sigma }_{y}}}=\dfrac{\sum{{{x}_{i}}{{y}_{i}}-n\overline{X}\overline{Y}}}{\sqrt{\sum{{{x}_{i}}^{2}-n{{\overline{X}}^{2}}}}\sqrt{\sum{{{y}_{i}}^{2}-n{{\overline{Y}}^{2}}}}}\]
We proceed from the left hand side of the statement ${{b}_{yx}}\cdot {{b}_{xy}}={{\left\{ \rho \left( X,Y \right) \right\}}^{2}}$
\[\begin{align}
& {{b}_{yx}}\cdot {{b}_{xy}}=\dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-n\overline{X}\overline{Y}}{\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}-n{{\left( \overline{X} \right)}^{2}}}}\times \dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-n\overline{X}\overline{Y}}{\sum\limits_{i=1}^{n}{{{y}_{i}}^{2}}-n{{\left( \overline{Y} \right)}^{2}}} \\
& ={{\left( \dfrac{\sum\limits_{i=1}^{n}{{{x}_{i}}{{y}_{i}}}-n\overline{X}\overline{Y}}{\sqrt{\sum\limits_{i=1}^{n}{{{x}_{i}}^{2}-n{{\left( \overline{X} \right)}^{2}}}\times \sum\limits_{i=1}^{n}{{{y}_{i}}^{2}}-n{{\left( \overline{Y} \right)}^{2}}}} \right)}^{2}}={{\left\{ \rho \left( X,Y \right) \right\}}^{2}} \\
\end{align}\]
Which is equal to the right hand side and hence the statement is proved.
Note: We can alternatively solve if we know the relation between regression coefficients ${{b}_{xy}},{{b}_{yx}}$ and standard deviation ${{\sigma }_{x}},{{\sigma }_{y}}$ as ${{b}_{xy}}=\rho \dfrac{{{\sigma }_{x}}}{{{\sigma }_{y}}},{{b}_{yx}}=\rho \dfrac{{{\sigma }_{y}}}{{{\sigma }_{x}}}$ and then proceed from left hand side. The proving statement can be written as the correlation coefficient in bivariate data is the geometric mean of regression coefficients.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

