
How do you prove that a triangle is equilateral if $ \sin A + \sin B + \sin C = \dfrac{{3\sqrt 3 }}{2}? $
Answer
533.4k+ views
Hint: As we can see that the above question is related to trigonometry as sine is a trigonometric ratio. We know that a triangle whose all three sides are equal is called an equilateral triangle. To prove any triangle equilateral we have to show that the value of each and every angle is $ {60^ \circ } $ . We will use trigonometric identities to solve this question.
Complete step-by-step answer:
As per the question we have to prove $ \sin A + \sin B + \sin C = \dfrac{{3\sqrt 3 }}{2} $ .
We know the trigonometric formula which states that $ \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right) \times \cos \left( {\dfrac{{A - B}}{2}} \right) $ .
Also we can write $ \sin C = \sin \{ 180 - (A + B)\} $ and also that $ \sin (180 - \theta ) = \sin \theta $ ,
Therefore $ \sin C = \sin (A + B) $ . We will equate all the formula i.e. $ \sin C = \sin (A + B) = 2\sin \left( {\dfrac{{A + B}}{2}} \right) \times \cos \left( {\dfrac{{A + B}}{2}} \right) $ .
Therefore, $ \sin A + \sin B + \sin C = 2\sin \left( {\dfrac{{A + B}}{2}} \right) \times \cos \left( {\dfrac{{A - B}}{2}} \right) + 2\sin \left( {\dfrac{{A + B}}{2}} \right) \times \cos \left( {\dfrac{{A + B}}{2}} \right) $
We can take the common factor out and solve it now: $ 2\sin \left( {\dfrac{{A + B}}{2}} \right)\left\{ {\cos \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)} \right\} $
$ = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\left\{ {2\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)} \right\} $
We can write it as $ 4\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{\pi }{2} - \dfrac{{B + C}}{2}} \right)\cos \left( {\dfrac{\pi }{2} - \dfrac{{A + B}}{2}} \right) $ .
It gives us the value $ 4\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B + C}}{2}} \right)\sin \left( {\dfrac{{C + A}}{2}} \right) $ , because we know that $ \sin A = \cos \left( {\dfrac{\pi }{2} - A} \right) $ .
So if $ A + B = B + C = A + C $ , then $ A = B = C = \dfrac{{A + B + C}}{3} $ , it is only possible when $ \sin A + sinB + \sin C $ is maximum.
So we have $ 4\sin {\left\{ {\left( {\dfrac{{180}}{3}} \right)} \right\}^3} = 4{(\sin 60)^3} $ . We know that the value of $ \sin 60 = \dfrac{{\sqrt 3 }}{2} $ , hence the required value is $ 4 \times {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^3} = \dfrac{{3\sqrt 3 }}{2} $ .
Hence $ \sin A + \sin B + \sin C \leqslant \dfrac{{3\sqrt 3 }}{2} $ and also that the triangle is equilateral since each angle comes out to be $ {60^ \circ } $ .
Note: We should note that there are trigonometric identities that we have used in the solution above such as $ \sin 2x = 2\sin x\cos x $ . This is called the double angle formula. There is another formula used in terms of cosine i.e. $ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right) $ . Before solving this type of question we should be fully aware of the trigonometric formulas.
Complete step-by-step answer:
As per the question we have to prove $ \sin A + \sin B + \sin C = \dfrac{{3\sqrt 3 }}{2} $ .
We know the trigonometric formula which states that $ \sin A + \sin B = 2\sin \left( {\dfrac{{A + B}}{2}} \right) \times \cos \left( {\dfrac{{A - B}}{2}} \right) $ .
Also we can write $ \sin C = \sin \{ 180 - (A + B)\} $ and also that $ \sin (180 - \theta ) = \sin \theta $ ,
Therefore $ \sin C = \sin (A + B) $ . We will equate all the formula i.e. $ \sin C = \sin (A + B) = 2\sin \left( {\dfrac{{A + B}}{2}} \right) \times \cos \left( {\dfrac{{A + B}}{2}} \right) $ .
Therefore, $ \sin A + \sin B + \sin C = 2\sin \left( {\dfrac{{A + B}}{2}} \right) \times \cos \left( {\dfrac{{A - B}}{2}} \right) + 2\sin \left( {\dfrac{{A + B}}{2}} \right) \times \cos \left( {\dfrac{{A + B}}{2}} \right) $
We can take the common factor out and solve it now: $ 2\sin \left( {\dfrac{{A + B}}{2}} \right)\left\{ {\cos \left( {\dfrac{{A - B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right)} \right\} $
$ = 2\sin \left( {\dfrac{{A + B}}{2}} \right)\left\{ {2\cos \left( {\dfrac{A}{2}} \right)\cos \left( {\dfrac{B}{2}} \right)} \right\} $
We can write it as $ 4\sin \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{\pi }{2} - \dfrac{{B + C}}{2}} \right)\cos \left( {\dfrac{\pi }{2} - \dfrac{{A + B}}{2}} \right) $ .
It gives us the value $ 4\sin \left( {\dfrac{{A + B}}{2}} \right)\sin \left( {\dfrac{{B + C}}{2}} \right)\sin \left( {\dfrac{{C + A}}{2}} \right) $ , because we know that $ \sin A = \cos \left( {\dfrac{\pi }{2} - A} \right) $ .
So if $ A + B = B + C = A + C $ , then $ A = B = C = \dfrac{{A + B + C}}{3} $ , it is only possible when $ \sin A + sinB + \sin C $ is maximum.
So we have $ 4\sin {\left\{ {\left( {\dfrac{{180}}{3}} \right)} \right\}^3} = 4{(\sin 60)^3} $ . We know that the value of $ \sin 60 = \dfrac{{\sqrt 3 }}{2} $ , hence the required value is $ 4 \times {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^3} = \dfrac{{3\sqrt 3 }}{2} $ .
Hence $ \sin A + \sin B + \sin C \leqslant \dfrac{{3\sqrt 3 }}{2} $ and also that the triangle is equilateral since each angle comes out to be $ {60^ \circ } $ .
Note: We should note that there are trigonometric identities that we have used in the solution above such as $ \sin 2x = 2\sin x\cos x $ . This is called the double angle formula. There is another formula used in terms of cosine i.e. $ \cos A + \cos B = 2\cos \left( {\dfrac{{A + B}}{2}} \right)\cos \left( {\dfrac{{A + B}}{2}} \right) $ . Before solving this type of question we should be fully aware of the trigonometric formulas.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

