
Prove that
\[2\sin \dfrac{\pi }{6}\sec \dfrac{\pi }{3}-4\sin \dfrac{5\pi }{6}\cot \dfrac{\pi }{4}=0\]
Answer
609.6k+ views
Hint: We have the trigonometric values in the given function that is \[\sin \dfrac{\pi }{6}=\dfrac{1}{2}\]and \[\sec \dfrac{\pi }{3}=2\], \[\sin \dfrac{5\pi }{6}=\dfrac{1}{2}\] because it can be written as \[\sin \left( \pi -\dfrac{\pi }{6} \right)\]so it is in second quadrant and sin is positive in that quadrant, \[\cot \dfrac{\pi }{4}=1\]
Complete step-by-step answer:
The given trigonometric function is \[2\sin \dfrac{\pi }{6}\sec \dfrac{\pi }{3}-4\sin \dfrac{5\pi }{6}\cot \dfrac{\pi }{4}\]
We know that value of trigonometric function \[\sin \dfrac{\pi }{6}\]is given by
\[\sin \dfrac{\pi }{6}=\dfrac{1}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1)
We know that the value of trigonometric function \[\sec \dfrac{\pi }{3}\]is given by
\[\sec \dfrac{\pi }{3}=2\]. . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . .(2)
We know that the value of trigonometric function \[\sin \dfrac{5\pi }{6}\]is given by
\[\sin \dfrac{5\pi }{6}=\dfrac{1}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .(3)
We know that the value of trigonometric function \[\cot \dfrac{\pi }{4}\]is given by
\[\cot \dfrac{\pi }{4}=1\]. . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Substituting the above values we will get
\[2\times \dfrac{1}{2}\times 2-4\times \dfrac{1}{2}\times 1\]
\[=2-2\]
\[=0\]
Hence proved.
Note: If they have given trigonometric values with angles greater than 90 degrees then write them as \[90\pm \theta ,180\pm \theta ,270\pm \theta ,360\pm \theta \]and then find the corresponding value. Note that in the first quadrant all are positive and in the 2nd sine angles are positive and in 3rd tan are positive and in 4th cos angles are positive.
Complete step-by-step answer:
The given trigonometric function is \[2\sin \dfrac{\pi }{6}\sec \dfrac{\pi }{3}-4\sin \dfrac{5\pi }{6}\cot \dfrac{\pi }{4}\]
We know that value of trigonometric function \[\sin \dfrac{\pi }{6}\]is given by
\[\sin \dfrac{\pi }{6}=\dfrac{1}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1)
We know that the value of trigonometric function \[\sec \dfrac{\pi }{3}\]is given by
\[\sec \dfrac{\pi }{3}=2\]. . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . .(2)
We know that the value of trigonometric function \[\sin \dfrac{5\pi }{6}\]is given by
\[\sin \dfrac{5\pi }{6}=\dfrac{1}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .(3)
We know that the value of trigonometric function \[\cot \dfrac{\pi }{4}\]is given by
\[\cot \dfrac{\pi }{4}=1\]. . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Substituting the above values we will get
\[2\times \dfrac{1}{2}\times 2-4\times \dfrac{1}{2}\times 1\]
\[=2-2\]
\[=0\]
Hence proved.
Note: If they have given trigonometric values with angles greater than 90 degrees then write them as \[90\pm \theta ,180\pm \theta ,270\pm \theta ,360\pm \theta \]and then find the corresponding value. Note that in the first quadrant all are positive and in the 2nd sine angles are positive and in 3rd tan are positive and in 4th cos angles are positive.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

