
Prove that
\[2\sin \dfrac{\pi }{6}\sec \dfrac{\pi }{3}-4\sin \dfrac{5\pi }{6}\cot \dfrac{\pi }{4}=0\]
Answer
594k+ views
Hint: We have the trigonometric values in the given function that is \[\sin \dfrac{\pi }{6}=\dfrac{1}{2}\]and \[\sec \dfrac{\pi }{3}=2\], \[\sin \dfrac{5\pi }{6}=\dfrac{1}{2}\] because it can be written as \[\sin \left( \pi -\dfrac{\pi }{6} \right)\]so it is in second quadrant and sin is positive in that quadrant, \[\cot \dfrac{\pi }{4}=1\]
Complete step-by-step answer:
The given trigonometric function is \[2\sin \dfrac{\pi }{6}\sec \dfrac{\pi }{3}-4\sin \dfrac{5\pi }{6}\cot \dfrac{\pi }{4}\]
We know that value of trigonometric function \[\sin \dfrac{\pi }{6}\]is given by
\[\sin \dfrac{\pi }{6}=\dfrac{1}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1)
We know that the value of trigonometric function \[\sec \dfrac{\pi }{3}\]is given by
\[\sec \dfrac{\pi }{3}=2\]. . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . .(2)
We know that the value of trigonometric function \[\sin \dfrac{5\pi }{6}\]is given by
\[\sin \dfrac{5\pi }{6}=\dfrac{1}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .(3)
We know that the value of trigonometric function \[\cot \dfrac{\pi }{4}\]is given by
\[\cot \dfrac{\pi }{4}=1\]. . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Substituting the above values we will get
\[2\times \dfrac{1}{2}\times 2-4\times \dfrac{1}{2}\times 1\]
\[=2-2\]
\[=0\]
Hence proved.
Note: If they have given trigonometric values with angles greater than 90 degrees then write them as \[90\pm \theta ,180\pm \theta ,270\pm \theta ,360\pm \theta \]and then find the corresponding value. Note that in the first quadrant all are positive and in the 2nd sine angles are positive and in 3rd tan are positive and in 4th cos angles are positive.
Complete step-by-step answer:
The given trigonometric function is \[2\sin \dfrac{\pi }{6}\sec \dfrac{\pi }{3}-4\sin \dfrac{5\pi }{6}\cot \dfrac{\pi }{4}\]
We know that value of trigonometric function \[\sin \dfrac{\pi }{6}\]is given by
\[\sin \dfrac{\pi }{6}=\dfrac{1}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1)
We know that the value of trigonometric function \[\sec \dfrac{\pi }{3}\]is given by
\[\sec \dfrac{\pi }{3}=2\]. . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . . .(2)
We know that the value of trigonometric function \[\sin \dfrac{5\pi }{6}\]is given by
\[\sin \dfrac{5\pi }{6}=\dfrac{1}{2}\]. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .(3)
We know that the value of trigonometric function \[\cot \dfrac{\pi }{4}\]is given by
\[\cot \dfrac{\pi }{4}=1\]. . . . .. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .(4)
Substituting the above values we will get
\[2\times \dfrac{1}{2}\times 2-4\times \dfrac{1}{2}\times 1\]
\[=2-2\]
\[=0\]
Hence proved.
Note: If they have given trigonometric values with angles greater than 90 degrees then write them as \[90\pm \theta ,180\pm \theta ,270\pm \theta ,360\pm \theta \]and then find the corresponding value. Note that in the first quadrant all are positive and in the 2nd sine angles are positive and in 3rd tan are positive and in 4th cos angles are positive.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

