Answer
Verified
456k+ views
Hint: In this question, we have to prove that the given relation is equal or not. The given problem is the relation to prove. By using the trigonometry relations in the given relation we will prove the required result. We have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step answer:
It is stated in the question \[2{\sin ^2}\theta + 3{\cos ^2}\theta \]….$(i)$
Now we have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$ from we here we can write ${\sin ^2}\theta = 1 - {\cos ^2}\theta $ which we have to put in the above equation $(i)$
\[2{\sin ^2}\theta + 3{\cos ^2}\theta \]
By using the relation ${\sin ^2}\theta + {\cos ^2}\theta = 1$ we get,
$ = 2(1 - {\cos ^2}\theta ) + 3{\cos ^2}\theta $
Multiplying the terms we get,
$ = 2 - 2{\cos ^2}\theta + 3{\cos ^2}\theta $
Simplifying we get,
$ = 2 + {\cos ^2}\theta $
$\therefore $ We have proved \[2{\sin ^2}\theta + 3{\cos ^2}\theta = 2 + {\cos ^2}\theta \].
Note: For solving this questions of trigonometry you have to remember the formulas for all like if you have to find out the value of $\sin \theta $ or $\operatorname{Cos} \theta $ you can apply the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$ if you have the value of either of them
Next if you need to find out the value of $\sec \theta $ or $\tan \theta $ then you can apply the formula ${\sec ^2}\theta - {\tan ^2}\theta = 1$, if you have the value of either of them
Now if you want to find out the value of $\cot \theta $ or $\cos ec\theta $, then you can apply the formula $\cos e{c^2}\theta - {\cot ^2}\theta = 1$, but for this you must know the value of either of them.
Besides these there are some other formulas which are necessary for solving the questions of trigonometry like $\sin \theta = \dfrac{1}{{\cos ec\theta }}$, $\tan \theta = \dfrac{1}{{\cot \theta }}$ and $\cos \theta = \dfrac{1}{{\sec \theta }}$
In some cases there are some questions where we have to find out the value of $\theta $ by applying those formula like $\sin \theta = \cos ({90^ \circ } - \theta )$, $\tan \theta = \cot ({90^ \circ } - \theta )$ sand $\sec \theta = \cos ec({90^ \circ } - \theta )$
Complete step-by-step answer:
It is stated in the question \[2{\sin ^2}\theta + 3{\cos ^2}\theta \]….$(i)$
Now we have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$ from we here we can write ${\sin ^2}\theta = 1 - {\cos ^2}\theta $ which we have to put in the above equation $(i)$
\[2{\sin ^2}\theta + 3{\cos ^2}\theta \]
By using the relation ${\sin ^2}\theta + {\cos ^2}\theta = 1$ we get,
$ = 2(1 - {\cos ^2}\theta ) + 3{\cos ^2}\theta $
Multiplying the terms we get,
$ = 2 - 2{\cos ^2}\theta + 3{\cos ^2}\theta $
Simplifying we get,
$ = 2 + {\cos ^2}\theta $
$\therefore $ We have proved \[2{\sin ^2}\theta + 3{\cos ^2}\theta = 2 + {\cos ^2}\theta \].
Note: For solving this questions of trigonometry you have to remember the formulas for all like if you have to find out the value of $\sin \theta $ or $\operatorname{Cos} \theta $ you can apply the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$ if you have the value of either of them
Next if you need to find out the value of $\sec \theta $ or $\tan \theta $ then you can apply the formula ${\sec ^2}\theta - {\tan ^2}\theta = 1$, if you have the value of either of them
Now if you want to find out the value of $\cot \theta $ or $\cos ec\theta $, then you can apply the formula $\cos e{c^2}\theta - {\cot ^2}\theta = 1$, but for this you must know the value of either of them.
Besides these there are some other formulas which are necessary for solving the questions of trigonometry like $\sin \theta = \dfrac{1}{{\cos ec\theta }}$, $\tan \theta = \dfrac{1}{{\cot \theta }}$ and $\cos \theta = \dfrac{1}{{\sec \theta }}$
In some cases there are some questions where we have to find out the value of $\theta $ by applying those formula like $\sin \theta = \cos ({90^ \circ } - \theta )$, $\tan \theta = \cot ({90^ \circ } - \theta )$ sand $\sec \theta = \cos ec({90^ \circ } - \theta )$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE