
Prove that \[2{\sin ^2}\theta + 3{\cos ^2}\theta = 2 + {\cos ^2}\theta \]
Answer
564.3k+ views
Hint: In this question, we have to prove that the given relation is equal or not. The given problem is the relation to prove. By using the trigonometry relations in the given relation we will prove the required result. We have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step answer:
It is stated in the question \[2{\sin ^2}\theta + 3{\cos ^2}\theta \]….$(i)$
Now we have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$ from we here we can write ${\sin ^2}\theta = 1 - {\cos ^2}\theta $ which we have to put in the above equation $(i)$
\[2{\sin ^2}\theta + 3{\cos ^2}\theta \]
By using the relation ${\sin ^2}\theta + {\cos ^2}\theta = 1$ we get,
$ = 2(1 - {\cos ^2}\theta ) + 3{\cos ^2}\theta $
Multiplying the terms we get,
$ = 2 - 2{\cos ^2}\theta + 3{\cos ^2}\theta $
Simplifying we get,
$ = 2 + {\cos ^2}\theta $
$\therefore $ We have proved \[2{\sin ^2}\theta + 3{\cos ^2}\theta = 2 + {\cos ^2}\theta \].
Note: For solving this questions of trigonometry you have to remember the formulas for all like if you have to find out the value of $\sin \theta $ or $\operatorname{Cos} \theta $ you can apply the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$ if you have the value of either of them
Next if you need to find out the value of $\sec \theta $ or $\tan \theta $ then you can apply the formula ${\sec ^2}\theta - {\tan ^2}\theta = 1$, if you have the value of either of them
Now if you want to find out the value of $\cot \theta $ or $\cos ec\theta $, then you can apply the formula $\cos e{c^2}\theta - {\cot ^2}\theta = 1$, but for this you must know the value of either of them.
Besides these there are some other formulas which are necessary for solving the questions of trigonometry like $\sin \theta = \dfrac{1}{{\cos ec\theta }}$, $\tan \theta = \dfrac{1}{{\cot \theta }}$ and $\cos \theta = \dfrac{1}{{\sec \theta }}$
In some cases there are some questions where we have to find out the value of $\theta $ by applying those formula like $\sin \theta = \cos ({90^ \circ } - \theta )$, $\tan \theta = \cot ({90^ \circ } - \theta )$ sand $\sec \theta = \cos ec({90^ \circ } - \theta )$
Complete step-by-step answer:
It is stated in the question \[2{\sin ^2}\theta + 3{\cos ^2}\theta \]….$(i)$
Now we have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$ from we here we can write ${\sin ^2}\theta = 1 - {\cos ^2}\theta $ which we have to put in the above equation $(i)$
\[2{\sin ^2}\theta + 3{\cos ^2}\theta \]
By using the relation ${\sin ^2}\theta + {\cos ^2}\theta = 1$ we get,
$ = 2(1 - {\cos ^2}\theta ) + 3{\cos ^2}\theta $
Multiplying the terms we get,
$ = 2 - 2{\cos ^2}\theta + 3{\cos ^2}\theta $
Simplifying we get,
$ = 2 + {\cos ^2}\theta $
$\therefore $ We have proved \[2{\sin ^2}\theta + 3{\cos ^2}\theta = 2 + {\cos ^2}\theta \].
Note: For solving this questions of trigonometry you have to remember the formulas for all like if you have to find out the value of $\sin \theta $ or $\operatorname{Cos} \theta $ you can apply the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$ if you have the value of either of them
Next if you need to find out the value of $\sec \theta $ or $\tan \theta $ then you can apply the formula ${\sec ^2}\theta - {\tan ^2}\theta = 1$, if you have the value of either of them
Now if you want to find out the value of $\cot \theta $ or $\cos ec\theta $, then you can apply the formula $\cos e{c^2}\theta - {\cot ^2}\theta = 1$, but for this you must know the value of either of them.
Besides these there are some other formulas which are necessary for solving the questions of trigonometry like $\sin \theta = \dfrac{1}{{\cos ec\theta }}$, $\tan \theta = \dfrac{1}{{\cot \theta }}$ and $\cos \theta = \dfrac{1}{{\sec \theta }}$
In some cases there are some questions where we have to find out the value of $\theta $ by applying those formula like $\sin \theta = \cos ({90^ \circ } - \theta )$, $\tan \theta = \cot ({90^ \circ } - \theta )$ sand $\sec \theta = \cos ec({90^ \circ } - \theta )$
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

