Answer
Verified
427.5k+ views
Hint: In this question, we have to prove that the given relation is equal or not. The given problem is the relation to prove. By using the trigonometry relations in the given relation we will prove the required result. We have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$
Complete step-by-step answer:
It is stated in the question \[2{\sin ^2}\theta + 3{\cos ^2}\theta \]….$(i)$
Now we have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$ from we here we can write ${\sin ^2}\theta = 1 - {\cos ^2}\theta $ which we have to put in the above equation $(i)$
\[2{\sin ^2}\theta + 3{\cos ^2}\theta \]
By using the relation ${\sin ^2}\theta + {\cos ^2}\theta = 1$ we get,
$ = 2(1 - {\cos ^2}\theta ) + 3{\cos ^2}\theta $
Multiplying the terms we get,
$ = 2 - 2{\cos ^2}\theta + 3{\cos ^2}\theta $
Simplifying we get,
$ = 2 + {\cos ^2}\theta $
$\therefore $ We have proved \[2{\sin ^2}\theta + 3{\cos ^2}\theta = 2 + {\cos ^2}\theta \].
Note: For solving this questions of trigonometry you have to remember the formulas for all like if you have to find out the value of $\sin \theta $ or $\operatorname{Cos} \theta $ you can apply the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$ if you have the value of either of them
Next if you need to find out the value of $\sec \theta $ or $\tan \theta $ then you can apply the formula ${\sec ^2}\theta - {\tan ^2}\theta = 1$, if you have the value of either of them
Now if you want to find out the value of $\cot \theta $ or $\cos ec\theta $, then you can apply the formula $\cos e{c^2}\theta - {\cot ^2}\theta = 1$, but for this you must know the value of either of them.
Besides these there are some other formulas which are necessary for solving the questions of trigonometry like $\sin \theta = \dfrac{1}{{\cos ec\theta }}$, $\tan \theta = \dfrac{1}{{\cot \theta }}$ and $\cos \theta = \dfrac{1}{{\sec \theta }}$
In some cases there are some questions where we have to find out the value of $\theta $ by applying those formula like $\sin \theta = \cos ({90^ \circ } - \theta )$, $\tan \theta = \cot ({90^ \circ } - \theta )$ sand $\sec \theta = \cos ec({90^ \circ } - \theta )$
Complete step-by-step answer:
It is stated in the question \[2{\sin ^2}\theta + 3{\cos ^2}\theta \]….$(i)$
Now we have to apply the formula of ${\sin ^2}\theta + {\cos ^2}\theta = 1$ from we here we can write ${\sin ^2}\theta = 1 - {\cos ^2}\theta $ which we have to put in the above equation $(i)$
\[2{\sin ^2}\theta + 3{\cos ^2}\theta \]
By using the relation ${\sin ^2}\theta + {\cos ^2}\theta = 1$ we get,
$ = 2(1 - {\cos ^2}\theta ) + 3{\cos ^2}\theta $
Multiplying the terms we get,
$ = 2 - 2{\cos ^2}\theta + 3{\cos ^2}\theta $
Simplifying we get,
$ = 2 + {\cos ^2}\theta $
$\therefore $ We have proved \[2{\sin ^2}\theta + 3{\cos ^2}\theta = 2 + {\cos ^2}\theta \].
Note: For solving this questions of trigonometry you have to remember the formulas for all like if you have to find out the value of $\sin \theta $ or $\operatorname{Cos} \theta $ you can apply the formula ${\sin ^2}\theta + {\cos ^2}\theta = 1$ if you have the value of either of them
Next if you need to find out the value of $\sec \theta $ or $\tan \theta $ then you can apply the formula ${\sec ^2}\theta - {\tan ^2}\theta = 1$, if you have the value of either of them
Now if you want to find out the value of $\cot \theta $ or $\cos ec\theta $, then you can apply the formula $\cos e{c^2}\theta - {\cot ^2}\theta = 1$, but for this you must know the value of either of them.
Besides these there are some other formulas which are necessary for solving the questions of trigonometry like $\sin \theta = \dfrac{1}{{\cos ec\theta }}$, $\tan \theta = \dfrac{1}{{\cot \theta }}$ and $\cos \theta = \dfrac{1}{{\sec \theta }}$
In some cases there are some questions where we have to find out the value of $\theta $ by applying those formula like $\sin \theta = \cos ({90^ \circ } - \theta )$, $\tan \theta = \cot ({90^ \circ } - \theta )$ sand $\sec \theta = \cos ec({90^ \circ } - \theta )$
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference Between Plant Cell and Animal Cell
10 examples of evaporation in daily life with explanations
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE