
Prove that: \[2\cos\dfrac{\pi }{{13}} \cos\dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos\dfrac{{5\pi }}{{13}} = 0\]
Answer
581.1k+ views
Hint:
We are given a trigonometric function, where we have to prove the term is equal to zero. We have, \[2 \cos A \cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\], which we are going to use in the given problem to simplify the problem. Then we use normal properties of cosine function to get to our result.
Complete step by step solution:
We are here given, \[2\cos \dfrac{\pi }{{13}} \cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0\]
So, we here start with,
L.H.S.
\[2 \cos\dfrac{\pi }{{13}} \cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Using, \[2\cos A \cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\] , we get,
\[ \Rightarrow \cos \left( {\dfrac{\pi }{{13}} + \dfrac{{9\pi }}{{13}}} \right) + \cos \left( {\dfrac{\pi }{{13}} - \dfrac{{9\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Now, on simplifying, we get,
\[ = \cos \left( {\dfrac{{10\pi }}{{13}}} \right) + \cos \left( { - \dfrac{{8\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Using, \[\cos \left( { - \theta } \right) = \cos \theta \], we get,
\[ = \cos \left( {\dfrac{{10\pi }}{{13}}} \right) + \cos \left( {\dfrac{{8\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Now, again, simplifying, we get,
\[ = \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) + \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
\[\because \cos (\pi - x) = - \cos (x)\] , we get,
\[ = - \cos \left( {\dfrac{{3\pi }}{{13}}} \right) - \cos \left( {\dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Cancelling out, we get,
$=0$
R.H.S
\[2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0\]
Hence, proved.
Note:
The properties of the cosine function are,
1) Domain: all real numbers
2) Range: \[\left[ { - 1,1} \right]\]
3) Period \[ = 2\pi \]
4) x intercepts: \[x = \dfrac{\pi }{2} + k\pi \] , where k is an integer.
5) y intercepts: \[y = 1\]
6) maximum points: \[\left( {2k\pi ,1} \right)\] , where k is an integer.
7) minimum points: \[\left( {\pi + 2k\pi , - 1} \right)\] , where k is an integer.
8) symmetry: since \[\cos \left( { - x} \right) = \cos \left( x \right)\] then \[cos\left( x \right)\] is an even function and its graph is symmetric with respect to the y axis.
We are given a trigonometric function, where we have to prove the term is equal to zero. We have, \[2 \cos A \cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\], which we are going to use in the given problem to simplify the problem. Then we use normal properties of cosine function to get to our result.
Complete step by step solution:
We are here given, \[2\cos \dfrac{\pi }{{13}} \cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0\]
So, we here start with,
L.H.S.
\[2 \cos\dfrac{\pi }{{13}} \cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Using, \[2\cos A \cos B = \cos \left( {A + B} \right) + \cos \left( {A - B} \right)\] , we get,
\[ \Rightarrow \cos \left( {\dfrac{\pi }{{13}} + \dfrac{{9\pi }}{{13}}} \right) + \cos \left( {\dfrac{\pi }{{13}} - \dfrac{{9\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Now, on simplifying, we get,
\[ = \cos \left( {\dfrac{{10\pi }}{{13}}} \right) + \cos \left( { - \dfrac{{8\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Using, \[\cos \left( { - \theta } \right) = \cos \theta \], we get,
\[ = \cos \left( {\dfrac{{10\pi }}{{13}}} \right) + \cos \left( {\dfrac{{8\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Now, again, simplifying, we get,
\[ = \cos \left( {\pi - \dfrac{{3\pi }}{{13}}} \right) + \cos \left( {\pi - \dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
\[\because \cos (\pi - x) = - \cos (x)\] , we get,
\[ = - \cos \left( {\dfrac{{3\pi }}{{13}}} \right) - \cos \left( {\dfrac{{5\pi }}{{13}}} \right) + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}}\]
Cancelling out, we get,
$=0$
R.H.S
\[2\cos \dfrac{\pi }{{13}}\cos \dfrac{{9\pi }}{{13}} + \cos \dfrac{{3\pi }}{{13}} + \cos \dfrac{{5\pi }}{{13}} = 0\]
Hence, proved.
Note:
The properties of the cosine function are,
1) Domain: all real numbers
2) Range: \[\left[ { - 1,1} \right]\]
3) Period \[ = 2\pi \]
4) x intercepts: \[x = \dfrac{\pi }{2} + k\pi \] , where k is an integer.
5) y intercepts: \[y = 1\]
6) maximum points: \[\left( {2k\pi ,1} \right)\] , where k is an integer.
7) minimum points: \[\left( {\pi + 2k\pi , - 1} \right)\] , where k is an integer.
8) symmetry: since \[\cos \left( { - x} \right) = \cos \left( x \right)\] then \[cos\left( x \right)\] is an even function and its graph is symmetric with respect to the y axis.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

