
Prove that $ (20,3),(19,8),(2, - 9)\& (2,15) $ are concyclic. Also find the equation of the circle passing through them.
Answer
529.8k+ views
Hint: We should first consider that three points are collinear. Using this assumption we will find an equation of the circle. Then we substitute the value of the last point into the equation of the triangle and check if that satisfies the equation of the circle.
Complete step by step solution:
Let the points be $ A(20,3),B(19,8),C(2, - 9),D(2,15) $ .
We know that the standard equation of circle is :
$ {x^2} + {y^2} + 2gx + 2fy + c = 0 $
Now, the equation of circle passing through $ B(19,8) $ is:
$
{(19)^2} + {(8)^2} + 2g(19) + 2f(8) + c = 0 \\
361 + 64 + 38g + 16f + c = 0 \\
425 + 38g + 16f + c = 0 - (i) \;
$
The equation of circle passing through $ C(2, - 9) $ is:
$
{(2)^2} + {( - 9)^2} + 2g(2) + 2f( - 9) + c = 0 \\
4 + 81 + 4g - 18f + c = 0 \\
85 + 4g - 18f + c = 0 - (ii) \;
$
The equation of circle passing through $ D(2,15) $ is:
$
{(2)^2} + {(15)^2} + 2g(2) + 2f(15) + c = 0 \\
4 + 225 + 4g + 30f + c = 0 \\
229 + 4g + 30f + c = 0 - (iii) \;
$
Now, when we subtract $ (ii) $ from $ (iii) $ , we get,
$
229 + 4g + 30f + c - 85 - 4g + 18f - c = 0 \\
229 + 4{g} + 30f +{c} - 85 - 4{g} + 18f -{c} = 0 \\
144 + 48f = 0 \\
144 = - 48f \\
f = \dfrac{{ - 144}}{{48}} \\
f = - 3 \;
$
Now subtracting $ (i) $ from $ (ii) $ , we get,
$
425 + 38g + 16f + c - 229 - 4g - 30f - c = 0 \\
425 + 38g + 16f +{c} - 229 - 4g - 30f -{c} = 0 \\
196 + 34g - 14f = 0 \;
$
Now, we know that $ f = - 3 $
$
196 + 34g - 14( - 3) = 0 \\
196 + 42 + 34g = 0 \\
238 + 34g = 0 \\
g = \dfrac{{ - 238}}{{34}} = - 7 \;
$
Substituting the values to $ (i) $ we get,
$
425 + 38( - 7) + 16( - 3) + c = 0 \\
425 - 266 - 48 + c = 0 \\
c = - 111 \;
$
Hence, the equation of the circle is $ {x^2} + {y^2} - 14x - 6y - 111 = 0 $ .
Now, when we substitute the values of point $ A(20,3) $ into the equation of circle, we get,
$ {x^2} + {y^2} - 14x - 6y - 111 = 0 $
$
{(20)^2} + {(3)^2} - 14(20) - 6(3) - 111 = 0 \\
400 + 9 - 280 - 18 - 111 = 0 \\
409 - 409 = 0 \\
0 = 0 \;
$
Now, since the left hand side is equal to the right hand side .
Hence, it satisfies the equation of circle. Therefore, It is also concyclic.
Note: A set of points is said to be concyclic only when all the points lie on a common circle. The distance between all the points and the centre of the circle will remain the same.
Complete step by step solution:
Let the points be $ A(20,3),B(19,8),C(2, - 9),D(2,15) $ .
We know that the standard equation of circle is :
$ {x^2} + {y^2} + 2gx + 2fy + c = 0 $
Now, the equation of circle passing through $ B(19,8) $ is:
$
{(19)^2} + {(8)^2} + 2g(19) + 2f(8) + c = 0 \\
361 + 64 + 38g + 16f + c = 0 \\
425 + 38g + 16f + c = 0 - (i) \;
$
The equation of circle passing through $ C(2, - 9) $ is:
$
{(2)^2} + {( - 9)^2} + 2g(2) + 2f( - 9) + c = 0 \\
4 + 81 + 4g - 18f + c = 0 \\
85 + 4g - 18f + c = 0 - (ii) \;
$
The equation of circle passing through $ D(2,15) $ is:
$
{(2)^2} + {(15)^2} + 2g(2) + 2f(15) + c = 0 \\
4 + 225 + 4g + 30f + c = 0 \\
229 + 4g + 30f + c = 0 - (iii) \;
$
Now, when we subtract $ (ii) $ from $ (iii) $ , we get,
$
229 + 4g + 30f + c - 85 - 4g + 18f - c = 0 \\
229 + 4{g} + 30f +{c} - 85 - 4{g} + 18f -{c} = 0 \\
144 + 48f = 0 \\
144 = - 48f \\
f = \dfrac{{ - 144}}{{48}} \\
f = - 3 \;
$
Now subtracting $ (i) $ from $ (ii) $ , we get,
$
425 + 38g + 16f + c - 229 - 4g - 30f - c = 0 \\
425 + 38g + 16f +{c} - 229 - 4g - 30f -{c} = 0 \\
196 + 34g - 14f = 0 \;
$
Now, we know that $ f = - 3 $
$
196 + 34g - 14( - 3) = 0 \\
196 + 42 + 34g = 0 \\
238 + 34g = 0 \\
g = \dfrac{{ - 238}}{{34}} = - 7 \;
$
Substituting the values to $ (i) $ we get,
$
425 + 38( - 7) + 16( - 3) + c = 0 \\
425 - 266 - 48 + c = 0 \\
c = - 111 \;
$
Hence, the equation of the circle is $ {x^2} + {y^2} - 14x - 6y - 111 = 0 $ .
Now, when we substitute the values of point $ A(20,3) $ into the equation of circle, we get,
$ {x^2} + {y^2} - 14x - 6y - 111 = 0 $
$
{(20)^2} + {(3)^2} - 14(20) - 6(3) - 111 = 0 \\
400 + 9 - 280 - 18 - 111 = 0 \\
409 - 409 = 0 \\
0 = 0 \;
$
Now, since the left hand side is equal to the right hand side .
Hence, it satisfies the equation of circle. Therefore, It is also concyclic.
Note: A set of points is said to be concyclic only when all the points lie on a common circle. The distance between all the points and the centre of the circle will remain the same.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

