Prove that \[2+\sqrt{5}\] is an irrational number.
Answer
363.9k+ views
Hint: Prove that \[\sqrt{5}\] is an irrational number by assuming that it is a rational number and then using contradiction to prove that it is an irrational number. Use the fact that the sum of a rational number and an irrational number is an irrational number to prove that \[2+\sqrt{5}\] is an irrational number.
We have to prove that \[2+\sqrt{5}\] is an irrational number. We will firstly prove that \[\sqrt{5}\] is an irrational number. We will prove this by contradiction technique.
Let’s assume that \[\sqrt{5}\] is a rational number. We know that any rational number can be written in the form \[\dfrac{a}{b}\] where \[a\] and \[b\] are co-prime numbers and \[b\ne 0\].
Thus, we have \[\sqrt{5}=\dfrac{a}{b}\]. Squaring on both sides, we get \[5=\dfrac{{{a}^{2}}}{{{b}^{2}}}\].
Rearranging the terms, we get \[{{a}^{2}}=5{{b}^{2}}......\left( 1 \right)\].
We see that \[5\] divides \[{{a}^{2}}\]. We know that if a prime number \[p\] divides \[{{a}^{2}}\], then \[p\] must divide \[a\] as well, where \[a\] is a positive integer.
Thus, as \[5\] divides \[{{a}^{2}}\], \[5\] must divide \[a\] as well.
Hence, we can write \[a=5c\] for some positive integer \[c\].
Substituting the value \[a=5c\] in equation \[\left( 1 \right)\], we have \[25{{c}^{2}}=5{{b}^{2}}\Rightarrow {{b}^{2}}=5{{c}^{2}}\].
As \[{{b}^{2}}=5{{c}^{2}}\], we observe that \[5\] divides \[{{b}^{2}}\]. So, \[5\] divides \[b\] as well using the fact that if a prime number \[p\] divides \[{{a}^{2}}\], then \[p\] must divide \[a\] as well, where \[a\] is a positive integer.
Thus, \[5\] divides both \[a\] and \[b\]. But this contradicts our assumption that \[a\] and \[b\] are coprimes.
Hence, our assumption is wrong that \[\sqrt{5}\] is a rational number.
We conclude that \[\sqrt{5}\] is an irrational number.
We can write \[2\] as \[\dfrac{2}{1}\], thus observing that it is a rational number.
We know that a sum of a rational number and an irrational number is an irrational number.
Hence, we observe that \[2+\sqrt{5}\] is an irrational number.
Note: It’s necessary to keep the definition of rational numbers in mind which states that any rational number can be written in the form \[\dfrac{a}{b}\] where \[a\] and \[b\] are co-prime numbers and \[b\ne 0\], while irrational numbers are all those real numbers which are not rational numbers. Also, it’s necessary to use the theorem which states that if a prime number \[p\] divides \[{{a}^{2}}\], then \[p\] must divide \[a\] as well, where \[a\] is a positive integer. We also observe that the square root of any prime number will be an irrational number.
We have to prove that \[2+\sqrt{5}\] is an irrational number. We will firstly prove that \[\sqrt{5}\] is an irrational number. We will prove this by contradiction technique.
Let’s assume that \[\sqrt{5}\] is a rational number. We know that any rational number can be written in the form \[\dfrac{a}{b}\] where \[a\] and \[b\] are co-prime numbers and \[b\ne 0\].
Thus, we have \[\sqrt{5}=\dfrac{a}{b}\]. Squaring on both sides, we get \[5=\dfrac{{{a}^{2}}}{{{b}^{2}}}\].
Rearranging the terms, we get \[{{a}^{2}}=5{{b}^{2}}......\left( 1 \right)\].
We see that \[5\] divides \[{{a}^{2}}\]. We know that if a prime number \[p\] divides \[{{a}^{2}}\], then \[p\] must divide \[a\] as well, where \[a\] is a positive integer.
Thus, as \[5\] divides \[{{a}^{2}}\], \[5\] must divide \[a\] as well.
Hence, we can write \[a=5c\] for some positive integer \[c\].
Substituting the value \[a=5c\] in equation \[\left( 1 \right)\], we have \[25{{c}^{2}}=5{{b}^{2}}\Rightarrow {{b}^{2}}=5{{c}^{2}}\].
As \[{{b}^{2}}=5{{c}^{2}}\], we observe that \[5\] divides \[{{b}^{2}}\]. So, \[5\] divides \[b\] as well using the fact that if a prime number \[p\] divides \[{{a}^{2}}\], then \[p\] must divide \[a\] as well, where \[a\] is a positive integer.
Thus, \[5\] divides both \[a\] and \[b\]. But this contradicts our assumption that \[a\] and \[b\] are coprimes.
Hence, our assumption is wrong that \[\sqrt{5}\] is a rational number.
We conclude that \[\sqrt{5}\] is an irrational number.
We can write \[2\] as \[\dfrac{2}{1}\], thus observing that it is a rational number.
We know that a sum of a rational number and an irrational number is an irrational number.
Hence, we observe that \[2+\sqrt{5}\] is an irrational number.
Note: It’s necessary to keep the definition of rational numbers in mind which states that any rational number can be written in the form \[\dfrac{a}{b}\] where \[a\] and \[b\] are co-prime numbers and \[b\ne 0\], while irrational numbers are all those real numbers which are not rational numbers. Also, it’s necessary to use the theorem which states that if a prime number \[p\] divides \[{{a}^{2}}\], then \[p\] must divide \[a\] as well, where \[a\] is a positive integer. We also observe that the square root of any prime number will be an irrational number.
Last updated date: 27th Sep 2023
•
Total views: 363.9k
•
Views today: 10.63k
Recently Updated Pages
What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the color of ferrous sulphate crystals? How does this color change after heating? Name the products formed on strongly heating ferrous sulphate crystals. What type of chemical reaction occurs in this type of change.

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE
