
How do you prove \[\tan x + \cot x = \sec x\csc x\]?
Answer
494.1k+ views
Hint: Here, we will take into consideration the left-hand side of the given equation. We will then convert the trigonometric function in terms of sine and cosine functions. We will then take LCM of the terms and then simplify using trigonometric ratios and reciprocal identities to prove the equation.
Formula Used:
We will use the following formulas:
1. \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
2. \[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
Complete step-by-step solution:
We will use trigonometric ratios and identities to simplify the left-hand side.
The left hand side of the given equation is \[\tan x + \cot x\].
The tangent of an angle \[x\] can be written as the quotient of the sine and cosine of the angle \[x\]. This can be written as \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
The cotangent of an angle \[x\] can be written as the quotient of the cosine and sine of the angle \[x\]. This can be written as \[\cot x = \dfrac{{\cos x}}{{\sin x}}\].
Substituting \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] in the left hand side of the equation, we get
\[\begin{array}{l}{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \tan x + \cot x\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}\end{array}\]
The lowest common denominator of the denominators \[\sin x\] and \[\cos x\] is \[\sin x\cos x\].
Multiplying and dividing \[\dfrac{{\sin x}}{{\cos x}}\] by \[\sin x\], and \[\dfrac{{\cos x}}{{\sin x}}\] by \[\cos x\], we get
\[\begin{array}{c} \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{{\sin x}}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}} \cdot \dfrac{{\cos x}}{{\cos x}}\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{{{\sin }^2}x}}{{\sin x\cos x}} + \dfrac{{{{\cos }^2}x}}{{\sin x\cos x}}\end{array}\]
Taking the lowest common denominator, we get
\[ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x\cos x}}\]
The sum of the squares of the sine and cosine of an angle is always equal to 1.
Therefore, we get
\[{\sin ^2}x + {\cos ^2}x = 1\]
Substituting \[{\sin ^2}x + {\cos ^2}x = 1\] in the L.H.S., we get
\[ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{\sin x\cos x}}\]
Rewriting the equation, we get
\[ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{\sin x}} \times \dfrac{1}{{\cos x}}\]
The secant of an angle \[x\] can be written as the reciprocal of cosine of the angle \[x\]. This can be written as \[\sec x = \dfrac{1}{{\cos x}}\].
The cosecant of an angle \[x\] can be written as the reciprocal of sine of the angle \[x\]. This can be written as \[\csc x = \dfrac{1}{{\sin x}}\].
Substituting \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{1}{{\sin x}} = \csc x\] in the L.H.S., we get
\[\begin{array}{c} \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \csc x\sec x\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \sec x\csc x\end{array}\]
Therefore, we get
\[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\]
Hence, we have proved the equation \[\tan x + \cot x = \sec x\csc x\].
Note:
Alternate method: We can simplify the right-hand side to prove the equation.
Rewriting the right hand side, we get
\[\begin{array}{l}{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \sec x\csc x\\ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{\cos x}} \times \dfrac{1}{{\sin x}}\\ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{\sin x\cos x}}\end{array}\]
Substituting \[1 = {\sin ^2}x + {\cos ^2}x\], we get
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x\cos x}}\]
Splitting the L.C.M., we get
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{{{\sin }^2}x}}{{\sin x\cos x}} + \dfrac{{{{\cos }^2}x}}{{\sin x\cos x}}\]
Simplifying the expression by removing the common factor from numerator and denominator, we get
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}\]
Therefore, we get
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \tan x + \cot x = L.H.S.\]
Hence, we have proved the equation \[\tan x + \cot x = \sec x\csc x\].
Formula Used:
We will use the following formulas:
1. \[\tan x = \dfrac{{\sin x}}{{\cos x}}\]
2. \[\cot x = \dfrac{{\cos x}}{{\sin x}}\]
Complete step-by-step solution:
We will use trigonometric ratios and identities to simplify the left-hand side.
The left hand side of the given equation is \[\tan x + \cot x\].
The tangent of an angle \[x\] can be written as the quotient of the sine and cosine of the angle \[x\]. This can be written as \[\tan x = \dfrac{{\sin x}}{{\cos x}}\].
The cotangent of an angle \[x\] can be written as the quotient of the cosine and sine of the angle \[x\]. This can be written as \[\cot x = \dfrac{{\cos x}}{{\sin x}}\].
Substituting \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] in the left hand side of the equation, we get
\[\begin{array}{l}{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \tan x + \cot x\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}\end{array}\]
The lowest common denominator of the denominators \[\sin x\] and \[\cos x\] is \[\sin x\cos x\].
Multiplying and dividing \[\dfrac{{\sin x}}{{\cos x}}\] by \[\sin x\], and \[\dfrac{{\cos x}}{{\sin x}}\] by \[\cos x\], we get
\[\begin{array}{c} \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{\sin x}}{{\cos x}} \cdot \dfrac{{\sin x}}{{\sin x}} + \dfrac{{\cos x}}{{\sin x}} \cdot \dfrac{{\cos x}}{{\cos x}}\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{{{\sin }^2}x}}{{\sin x\cos x}} + \dfrac{{{{\cos }^2}x}}{{\sin x\cos x}}\end{array}\]
Taking the lowest common denominator, we get
\[ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x\cos x}}\]
The sum of the squares of the sine and cosine of an angle is always equal to 1.
Therefore, we get
\[{\sin ^2}x + {\cos ^2}x = 1\]
Substituting \[{\sin ^2}x + {\cos ^2}x = 1\] in the L.H.S., we get
\[ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{\sin x\cos x}}\]
Rewriting the equation, we get
\[ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{\sin x}} \times \dfrac{1}{{\cos x}}\]
The secant of an angle \[x\] can be written as the reciprocal of cosine of the angle \[x\]. This can be written as \[\sec x = \dfrac{1}{{\cos x}}\].
The cosecant of an angle \[x\] can be written as the reciprocal of sine of the angle \[x\]. This can be written as \[\csc x = \dfrac{1}{{\sin x}}\].
Substituting \[\dfrac{1}{{\cos x}} = \sec x\] and \[\dfrac{1}{{\sin x}} = \csc x\] in the L.H.S., we get
\[\begin{array}{c} \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \csc x\sec x\\ \Rightarrow {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = \sec x\csc x\end{array}\]
Therefore, we get
\[{\text{L}}{\text{.H}}{\text{.S}}{\text{.}} = {\text{R}}{\text{.H}}{\text{.S}}{\text{.}}\]
Hence, we have proved the equation \[\tan x + \cot x = \sec x\csc x\].
Note:
Alternate method: We can simplify the right-hand side to prove the equation.
Rewriting the right hand side, we get
\[\begin{array}{l}{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \sec x\csc x\\ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{\cos x}} \times \dfrac{1}{{\sin x}}\\ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{1}{{\sin x\cos x}}\end{array}\]
Substituting \[1 = {\sin ^2}x + {\cos ^2}x\], we get
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{{{\sin }^2}x + {{\cos }^2}x}}{{\sin x\cos x}}\]
Splitting the L.C.M., we get
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{{{\sin }^2}x}}{{\sin x\cos x}} + \dfrac{{{{\cos }^2}x}}{{\sin x\cos x}}\]
Simplifying the expression by removing the common factor from numerator and denominator, we get
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}\]
Therefore, we get
\[ \Rightarrow {\text{R}}{\text{.H}}{\text{.S}}{\text{.}} = \tan x + \cot x = L.H.S.\]
Hence, we have proved the equation \[\tan x + \cot x = \sec x\csc x\].
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Economics: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

10 examples of evaporation in daily life with explanations
