
Prove: $\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)={{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\tan }^{2}}A$ .
Answer
552.6k+ views
Hint: Useful Trigonometric identities. With the help of given identities we will be able to prove the given statement.
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $
$1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $
$\tan \theta =\dfrac{sin\theta }{\cos \theta }$
$\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
$\csc \theta =\dfrac{1}{\sin \theta }$
$\sec \theta =\dfrac{1}{\cos \theta }$
$\cot \theta =\dfrac{1}{\tan \theta }$
Complete step-by-step answer:
Let's consider each of the expressions one by one:
LHS = $\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)$
Using the identities ${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $ and $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ , we get:
$\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sec }^{2}}A}{{{\csc }^{2}}A}$
We know that $\sec \theta =\dfrac{1}{\cos \theta }$ and $\csc \theta =\dfrac{1}{\sin \theta }$ , therefore:
$\Rightarrow$ $\dfrac{{{\sec }^{2}}A}{{{\csc }^{2}}A}=\dfrac{\left( \dfrac{1}{{{\cos }^{2}}A} \right)}{\left( \dfrac{1}{{{\sin }^{2}}A} \right)}$
In order to divide by a fraction, we have to multiply with the fractions reciprocal:
$\Rightarrow$ $\dfrac{\left( \dfrac{1}{{{\cos }^{2}}A} \right)}{\left( \dfrac{1}{{{\sin }^{2}}A} \right)}=\left( \dfrac{1}{{{\cos }^{2}}A} \right)\times \left( \dfrac{{{\sin }^{2}}A}{1} \right)=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}={{\tan }^{2}}A$ . Hence proved.
And, RHS = ${{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$
Using $\tan \theta =\dfrac{sin\theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ , we can write it as:
${{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( \dfrac{1-\dfrac{\sin A}{\cos A}}{1-\dfrac{\cos A}{\sin A}} \right)}^{2}}$
On equating the denominators and subtracting, we have:
$\Rightarrow$ ${{\left( \dfrac{1-\dfrac{\sin A}{\cos A}}{1-\dfrac{\cos A}{\sin A}} \right)}^{2}}={{\left( \dfrac{\dfrac{\cos A-\sin A}{\cos A}}{\dfrac{\sin A-\cos A}{\sin A}} \right)}^{2}}={{\left( \dfrac{\cos A-\sin A}{\cos A}\times \dfrac{\sin A}{\sin A-\cos A} \right)}^{2}}$
Since, $\tan \theta =\dfrac{sin\theta }{\cos \theta }$ and (cos A - sin A) = -(sin A - cos A), we can rewrite the expression as:
$\Rightarrow$ ${{\left[ \dfrac{\sin A}{\cos A}\times \dfrac{(-1)(\sin A-\cos A)}{(\sin A-\cos A)} \right]}^{2}}={{[\tan A\times (-1)]}^{2}}={{\tan }^{2}}A$ . Hence proved.
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$\sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B}$
${{P}^{2}}+{{B}^{2}}={{H}^{2}}$ (Pythagoras' Theorem)
The identities ${{\sin}^{2}}\theta +{{\cos }^{2}}\theta =1$ , ${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $ and $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ are equivalent to each other and they are a direct result of the Pythagoras' theorem.
${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$
${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $
$1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $
$\tan \theta =\dfrac{sin\theta }{\cos \theta }$
$\cot \theta =\dfrac{\cos \theta }{\sin \theta }$
$\csc \theta =\dfrac{1}{\sin \theta }$
$\sec \theta =\dfrac{1}{\cos \theta }$
$\cot \theta =\dfrac{1}{\tan \theta }$
Complete step-by-step answer:
Let's consider each of the expressions one by one:
LHS = $\left( \dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A} \right)$
Using the identities ${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $ and $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ , we get:
$\dfrac{1+{{\tan }^{2}}A}{1+{{\cot }^{2}}A}=\dfrac{{{\sec }^{2}}A}{{{\csc }^{2}}A}$
We know that $\sec \theta =\dfrac{1}{\cos \theta }$ and $\csc \theta =\dfrac{1}{\sin \theta }$ , therefore:
$\Rightarrow$ $\dfrac{{{\sec }^{2}}A}{{{\csc }^{2}}A}=\dfrac{\left( \dfrac{1}{{{\cos }^{2}}A} \right)}{\left( \dfrac{1}{{{\sin }^{2}}A} \right)}$
In order to divide by a fraction, we have to multiply with the fractions reciprocal:
$\Rightarrow$ $\dfrac{\left( \dfrac{1}{{{\cos }^{2}}A} \right)}{\left( \dfrac{1}{{{\sin }^{2}}A} \right)}=\left( \dfrac{1}{{{\cos }^{2}}A} \right)\times \left( \dfrac{{{\sin }^{2}}A}{1} \right)=\dfrac{{{\sin }^{2}}A}{{{\cos }^{2}}A}={{\tan }^{2}}A$ . Hence proved.
And, RHS = ${{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}$
Using $\tan \theta =\dfrac{sin\theta }{\cos \theta }$ and $\cot \theta =\dfrac{\cos \theta }{\sin \theta }$ , we can write it as:
${{\left( \dfrac{1-\tan A}{1-\cot A} \right)}^{2}}={{\left( \dfrac{1-\dfrac{\sin A}{\cos A}}{1-\dfrac{\cos A}{\sin A}} \right)}^{2}}$
On equating the denominators and subtracting, we have:
$\Rightarrow$ ${{\left( \dfrac{1-\dfrac{\sin A}{\cos A}}{1-\dfrac{\cos A}{\sin A}} \right)}^{2}}={{\left( \dfrac{\dfrac{\cos A-\sin A}{\cos A}}{\dfrac{\sin A-\cos A}{\sin A}} \right)}^{2}}={{\left( \dfrac{\cos A-\sin A}{\cos A}\times \dfrac{\sin A}{\sin A-\cos A} \right)}^{2}}$
Since, $\tan \theta =\dfrac{sin\theta }{\cos \theta }$ and (cos A - sin A) = -(sin A - cos A), we can rewrite the expression as:
$\Rightarrow$ ${{\left[ \dfrac{\sin A}{\cos A}\times \dfrac{(-1)(\sin A-\cos A)}{(\sin A-\cos A)} \right]}^{2}}={{[\tan A\times (-1)]}^{2}}={{\tan }^{2}}A$ . Hence proved.
Note: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$\sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B}$
${{P}^{2}}+{{B}^{2}}={{H}^{2}}$ (Pythagoras' Theorem)
The identities ${{\sin}^{2}}\theta +{{\cos }^{2}}\theta =1$ , ${{\tan }^{2}}\theta +1={{\sec }^{2}}\theta $ and $1+{{\cot }^{2}}\theta ={{\csc }^{2}}\theta $ are equivalent to each other and they are a direct result of the Pythagoras' theorem.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

