
Prove It - \[\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi = \cot \phi \]?
Answer
489.9k+ views
Hint: We need to prove \[\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi = \cot \phi \]. For this, we will mainly use the trigonometric identity \[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\]. Using this identity again and again from different angles, we will keep simplifying the given expression and then finally reach our answer. Also, we will be using \[\cot \theta = \dfrac{1}{{\tan \theta }}\].
Complete step-by-step answer:
We need to prove \[\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi = \cot \phi \].
Let us consider,
\[\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi \]
We know, \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. So, we can write \[8\cot 8\phi \] as \[\dfrac{8}{{\tan 8\phi }}\]. Writing this, we get our left hand side to be equal to
\[ = \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{8}{{\tan 8\phi }}\]
Now, using \[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\] on the last term, we get
\[ = \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{8}{{\dfrac{{2\tan 4\phi }}{{1 - {{\tan }^2}4\phi }}}}\]
Now, using the property \[\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}\], we get
\[ = \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{{8\left( {1 - {{\tan }^2}4\phi } \right)}}{{2\tan 4\phi }}\]
Now cancelling some term from numerator and denominator, we get
\[ = \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{{4\left( {1 - {{\tan }^2}4\phi } \right)}}{{\tan 4\phi }}\]
Now, taking LCM of the last two terms and opening the brackets, we get
\[ = \tan \phi + 2\tan 2\phi + \dfrac{{4{{\tan }^2}4\phi + 4 - 4{{\tan }^2}4\phi }}{{\tan 4\phi }}\]
Now, cancelling out \[4{\tan ^2}4\phi \] from the numerator, we get
\[ = \tan \phi + 2\tan 2\phi + \dfrac{4}{{\tan 4\phi }}\]
Again using \[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\] in the last term, we get
\[ = \tan \phi + 2\tan 2\phi + \dfrac{4}{{\dfrac{{2\tan 2\phi }}{{1 - {{\tan }^2}2\phi }}}}\]
Using the property \[\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}\], we have
\[ = \tan \phi + 2\tan 2\phi + \dfrac{{4\left( {1 - {{\tan }^2}2\phi } \right)}}{{2\tan 2\phi }}\]
Cancelling some terms from the numerator and denominator, we get
\[ = \tan \phi + 2\tan 2\phi + \dfrac{{2\left( {1 - {{\tan }^2}2\phi } \right)}}{{\tan 2\phi }}\]
Now, taking LCM of the last two terms and opening the brackets, we get
\[ = \tan \phi + \dfrac{{2{{\tan }^2}2\phi + 2 - 2{{\tan }^2}2\phi }}{{\tan 2\phi }}\]
Now, cancelling \[2{\tan ^2}2\phi \] from the numerator, we get
\[ = \tan \phi + \dfrac{2}{{\tan 2\phi }}\]
Again using \[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\], we get our left hand side to be equal to
\[ = \tan \phi + \dfrac{2}{{\dfrac{{2\tan \phi }}{{1 - {{\tan }^2}\phi }}}}\]
Using \[\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}\], we have
\[ = \tan \phi + \dfrac{{2\left( {1 - {{\tan }^2}\phi } \right)}}{{2\tan \phi }}\]
Now, cancelling out \[2\] from the numerator and denominator, we get
\[ = \tan \phi + \dfrac{{\left( {1 - {{\tan }^2}\phi } \right)}}{{\tan \phi }}\]
Now, taking LCM and opening the brackets, we get
\[ = \dfrac{{{{\tan }^2}\phi + 1 - {{\tan }^2}\phi }}{{\tan \phi }}\]
Cancelling \[{\tan ^2}\phi \] from the numerator, Left Hand Side becomes
\[ = \dfrac{1}{{\tan \phi }}\]
We know, \[\cot \phi = \dfrac{1}{{\tan \phi }}\]. So, using this Left Hand Side becomes
\[ \Rightarrow \dfrac{1}{{\tan \phi }} = \cot \phi \]
Hence, we get Left Hand Side = Right Hand Side \[ = \cot \phi \]
Note: We can also solve this problem using the formula \[\cot \phi - \tan \phi = 2\cot 2\phi \]. For that, we will first bring all our terms to the right hand side and then apply this formula first on the some terms according to the given conditions and then to the other terms and prove it equal to zero i.e. we need to prove \[RHS - LHS = 0\] which implies \[LHS = RHS\].
Complete step-by-step answer:
We need to prove \[\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi = \cot \phi \].
Let us consider,
\[\tan \phi + 2\tan 2\phi + 4\tan 4\phi + 8\cot 8\phi \]
We know, \[\cot \theta = \dfrac{1}{{\tan \theta }}\]. So, we can write \[8\cot 8\phi \] as \[\dfrac{8}{{\tan 8\phi }}\]. Writing this, we get our left hand side to be equal to
\[ = \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{8}{{\tan 8\phi }}\]
Now, using \[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\] on the last term, we get
\[ = \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{8}{{\dfrac{{2\tan 4\phi }}{{1 - {{\tan }^2}4\phi }}}}\]
Now, using the property \[\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}\], we get
\[ = \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{{8\left( {1 - {{\tan }^2}4\phi } \right)}}{{2\tan 4\phi }}\]
Now cancelling some term from numerator and denominator, we get
\[ = \tan \phi + 2\tan 2\phi + 4\tan 4\phi + \dfrac{{4\left( {1 - {{\tan }^2}4\phi } \right)}}{{\tan 4\phi }}\]
Now, taking LCM of the last two terms and opening the brackets, we get
\[ = \tan \phi + 2\tan 2\phi + \dfrac{{4{{\tan }^2}4\phi + 4 - 4{{\tan }^2}4\phi }}{{\tan 4\phi }}\]
Now, cancelling out \[4{\tan ^2}4\phi \] from the numerator, we get
\[ = \tan \phi + 2\tan 2\phi + \dfrac{4}{{\tan 4\phi }}\]
Again using \[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\] in the last term, we get
\[ = \tan \phi + 2\tan 2\phi + \dfrac{4}{{\dfrac{{2\tan 2\phi }}{{1 - {{\tan }^2}2\phi }}}}\]
Using the property \[\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}\], we have
\[ = \tan \phi + 2\tan 2\phi + \dfrac{{4\left( {1 - {{\tan }^2}2\phi } \right)}}{{2\tan 2\phi }}\]
Cancelling some terms from the numerator and denominator, we get
\[ = \tan \phi + 2\tan 2\phi + \dfrac{{2\left( {1 - {{\tan }^2}2\phi } \right)}}{{\tan 2\phi }}\]
Now, taking LCM of the last two terms and opening the brackets, we get
\[ = \tan \phi + \dfrac{{2{{\tan }^2}2\phi + 2 - 2{{\tan }^2}2\phi }}{{\tan 2\phi }}\]
Now, cancelling \[2{\tan ^2}2\phi \] from the numerator, we get
\[ = \tan \phi + \dfrac{2}{{\tan 2\phi }}\]
Again using \[\tan 2\theta = \dfrac{{2\tan \theta }}{{1 - {{\tan }^2}\theta }}\], we get our left hand side to be equal to
\[ = \tan \phi + \dfrac{2}{{\dfrac{{2\tan \phi }}{{1 - {{\tan }^2}\phi }}}}\]
Using \[\dfrac{a}{{\dfrac{b}{c}}} = \dfrac{{ac}}{b}\], we have
\[ = \tan \phi + \dfrac{{2\left( {1 - {{\tan }^2}\phi } \right)}}{{2\tan \phi }}\]
Now, cancelling out \[2\] from the numerator and denominator, we get
\[ = \tan \phi + \dfrac{{\left( {1 - {{\tan }^2}\phi } \right)}}{{\tan \phi }}\]
Now, taking LCM and opening the brackets, we get
\[ = \dfrac{{{{\tan }^2}\phi + 1 - {{\tan }^2}\phi }}{{\tan \phi }}\]
Cancelling \[{\tan ^2}\phi \] from the numerator, Left Hand Side becomes
\[ = \dfrac{1}{{\tan \phi }}\]
We know, \[\cot \phi = \dfrac{1}{{\tan \phi }}\]. So, using this Left Hand Side becomes
\[ \Rightarrow \dfrac{1}{{\tan \phi }} = \cot \phi \]
Hence, we get Left Hand Side = Right Hand Side \[ = \cot \phi \]
Note: We can also solve this problem using the formula \[\cot \phi - \tan \phi = 2\cot 2\phi \]. For that, we will first bring all our terms to the right hand side and then apply this formula first on the some terms according to the given conditions and then to the other terms and prove it equal to zero i.e. we need to prove \[RHS - LHS = 0\] which implies \[LHS = RHS\].
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

