
Prove geometrically that:
$ \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B $
Answer
556.2k+ views
Hint: In a right-angled triangle with length of the side opposite to angle θ as perpendicular (P), base (B) and hypotenuse (H):
$ \sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B} $
$ {{P}^{2}}+{{B}^{2}}={{H}^{2}} $ (Pythagoras' Theorem)
Draw a right-angled $ \Delta PQR $ with $ \angle Q={{90}^{\circ }} $ and $ \angle P=A $ . At the point P, draw another right-angled triangle $ \Delta PRS $ on the hypotenuse of $ \Delta PQR $ , such that $ \angle R={{90}^{\circ }} $ and $ \angle P=B $ . Finally, drop a line ST perpendicular on PQ to complete a right-angled triangle $ \Delta PTS $ with $ \angle T={{90}^{\circ }} $ and $ \angle P=A+B $ , and complete the proof by considering the lengths of the sides of the triangles. Also draw $ RM\bot ST $ .
Complete step-by-step answer:
To prove: $ \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B $ .
Proof: Using the definition of trigonometric ratios:
In $ \Delta PQR $ :
$ \cos A=\dfrac{PQ}{PR} $ ... (1).
In $ \Delta PRS $ :
$ \cos B=\dfrac{PR}{PS} $ ... (2).
$ \sin B=\dfrac{SR}{PS} $ ... (3).
Since $ MR\parallel PQ $ , $ \angle MRP=\angle PRQ=A $ (Alternate interior angles), and so $ \angle MRS={{90}^{\circ }}-A $ .
∴ In $ \Delta SMR $ , $ \angle MSR={{90}^{\circ }}-({{90}^{\circ }}-A)=A $ , and:
$ \sin A=\dfrac{RM}{SR} $ ... (4).
Now, using equations (1) and (2), we get:
$ \cos A.\cos B=\dfrac{PQ}{PR}.\dfrac{PR}{PS}=\dfrac{PQ}{PS} $ ... (5).
Finally, in $ \Delta PTS $ :
$ \cos (A+B)=\dfrac{PT}{PS}=\dfrac{PQ-QT}{PS} $
Since QT = MR, we can write:
$ \cos (A+B)=\dfrac{PQ}{PS}-\dfrac{RM}{PS} $
⇒ $ \cos (A+B)=\dfrac{PQ}{PS}-\dfrac{RM}{SR}.\dfrac{SR}{PS} $
Using equations (3), (4) and (5):
$ \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B $
Note: Using the fact that $ \cos (-\theta )=\cos \theta $ and $ \sin (-\theta )=-\sin \theta $ , we will get:
$ \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B $
Similar strategy can be applied to prove results for $ \sin (A\pm B) $ .
There are many other ways to prove the result: using a unit circle, other types of constructions, etc.
$ \sin \theta =\dfrac{P}{H},\cos \theta =\dfrac{B}{H},\tan \theta =\dfrac{P}{B} $
$ {{P}^{2}}+{{B}^{2}}={{H}^{2}} $ (Pythagoras' Theorem)
Draw a right-angled $ \Delta PQR $ with $ \angle Q={{90}^{\circ }} $ and $ \angle P=A $ . At the point P, draw another right-angled triangle $ \Delta PRS $ on the hypotenuse of $ \Delta PQR $ , such that $ \angle R={{90}^{\circ }} $ and $ \angle P=B $ . Finally, drop a line ST perpendicular on PQ to complete a right-angled triangle $ \Delta PTS $ with $ \angle T={{90}^{\circ }} $ and $ \angle P=A+B $ , and complete the proof by considering the lengths of the sides of the triangles. Also draw $ RM\bot ST $ .
Complete step-by-step answer:
To prove: $ \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B $ .
Proof: Using the definition of trigonometric ratios:
In $ \Delta PQR $ :
$ \cos A=\dfrac{PQ}{PR} $ ... (1).
In $ \Delta PRS $ :
$ \cos B=\dfrac{PR}{PS} $ ... (2).
$ \sin B=\dfrac{SR}{PS} $ ... (3).
Since $ MR\parallel PQ $ , $ \angle MRP=\angle PRQ=A $ (Alternate interior angles), and so $ \angle MRS={{90}^{\circ }}-A $ .
∴ In $ \Delta SMR $ , $ \angle MSR={{90}^{\circ }}-({{90}^{\circ }}-A)=A $ , and:
$ \sin A=\dfrac{RM}{SR} $ ... (4).
Now, using equations (1) and (2), we get:
$ \cos A.\cos B=\dfrac{PQ}{PR}.\dfrac{PR}{PS}=\dfrac{PQ}{PS} $ ... (5).
Finally, in $ \Delta PTS $ :
$ \cos (A+B)=\dfrac{PT}{PS}=\dfrac{PQ-QT}{PS} $
Since QT = MR, we can write:
$ \cos (A+B)=\dfrac{PQ}{PS}-\dfrac{RM}{PS} $
⇒ $ \cos (A+B)=\dfrac{PQ}{PS}-\dfrac{RM}{SR}.\dfrac{SR}{PS} $
Using equations (3), (4) and (5):
$ \cos \left( A+B \right)=\cos A\cos B-\sin A\sin B $
Note: Using the fact that $ \cos (-\theta )=\cos \theta $ and $ \sin (-\theta )=-\sin \theta $ , we will get:
$ \cos \left( A-B \right)=\cos A\cos B+\sin A\sin B $
Similar strategy can be applied to prove results for $ \sin (A\pm B) $ .
There are many other ways to prove the result: using a unit circle, other types of constructions, etc.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

