
Prove following expression:
\[{{\sin }^{2}}\dfrac{\pi }{8}+{{\sin }^{2}}\dfrac{3\pi }{8}+{{\sin }^{2}}\dfrac{5\pi }{8}+{{\sin }^{2}}\dfrac{7\pi }{8}=2\].
Answer
592.2k+ views
Hint: In this question, we first need to express the given expression in terms of some standard angles by using trigonometric ratios of multiple angles formula. Then apply the transformation formula to simplify it further. Now, on further simplification we get the result.
\[1-\cos 2A=2{{\sin }^{2}}A\]
\[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]
Complete step by step answer:
As we already know that form the trigonometric ratios of multiple angles
\[1-\cos 2A=2{{\sin }^{2}}A\]
Here, from the transformation formula we also have
\[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]
Now, by considering the given equation we get,
\[\Rightarrow {{\sin }^{2}}\dfrac{\pi }{8}+{{\sin }^{2}}\dfrac{3\pi }{8}+{{\sin }^{2}}\dfrac{5\pi }{8}+{{\sin }^{2}}\dfrac{7\pi }{8}\]
Now, on applying trigonometric ratios of multiple angles we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 1-\cos \dfrac{\pi }{4} \right)+\dfrac{1}{2}\left( 1-\cos \dfrac{3\pi }{4} \right)+\dfrac{1}{2}\left( 1-\cos \dfrac{5\pi }{4} \right)+\dfrac{1}{2}\left( 1-\cos \dfrac{7\pi }{4} \right) \\
& \left[ \because 1-\cos 2A=2{{\sin }^{2}}A \right] \\
& \\
\end{align}\]
By rearranging the terms in the above equation we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 4-\cos \dfrac{\pi }{4}-\cos \dfrac{3\pi }{4}-\cos \dfrac{5\pi }{4}-\cos \dfrac{7\pi }{4} \right) \\
& \Rightarrow 2-\dfrac{1}{2}\left( \cos \dfrac{\pi }{4}+\cos \dfrac{3\pi }{4}+\cos \dfrac{5\pi }{4}+\cos \dfrac{7\pi }{4} \right) \\
\end{align}\]
Now, by applying transformation formula to the above equation we get,
\[\begin{align}
& \Rightarrow 2-\dfrac{1}{2}\left( 2\cos \left[ \dfrac{\frac{\pi }{4}+\dfrac{3\pi }{4}}{2} \right]\cos \left[ \dfrac{\dfrac{\pi }{4}-\dfrac{3\pi }{4}}{2} \right]+2\cos \left[ \dfrac{\dfrac{5\pi }{4}+\dfrac{7\pi }{4}}{2} \right]\cos \left[ \dfrac{\dfrac{5\pi }{4}-\dfrac{7\pi }{4}}{2} \right] \right) \\
& \left[ \because \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \right] \\
\end{align}\]
Now, on further simplifying the above expression we get,
\[\Rightarrow 2-\left( \cos \dfrac{\pi }{2}\cos \dfrac{-\pi }{4}+\cos \dfrac{3\pi }{2}\cos \dfrac{-\pi }{4} \right)\]
Let us now take the common terms out to simplify it further
\[\Rightarrow 2-\cos \dfrac{\pi }{4}\left( \cos \dfrac{\pi }{2}+\cos \dfrac{3\pi }{2} \right)\text{ }\left[ \because \cos \left( -\theta \right)=\cos \theta \right]\]
Now, let us substitute the respective values to simplify it further
\[\Rightarrow 2-\cos \dfrac{\pi }{4}\times 0\text{ }\left[ \because \cos \dfrac{\pi }{2}=\cos \dfrac{3\pi }{2}=0 \right]\]
Now, this can be rewritten as
\[\begin{align}
& \Rightarrow 2 \\
& \therefore {{\sin }^{2}}\dfrac{\pi }{8}+{{\sin }^{2}}\dfrac{3\pi }{8}+{{\sin }^{2}}\dfrac{5\pi }{8}+{{\sin }^{2}}\dfrac{7\pi }{8}=2 \\
\end{align}\]
Note:
Instead of directly writing the \[{{\sin }^{2}}A\] terms in terms of \[\cos 2A\] we can convert those terms into \[{{\cos }^{2}}A\] using the identity \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\] and then convert it in terms of
\[\cos 2A\] is one of the alternate methods.
We can use the trigonometric ratios of compound angles formula in place of the transformation formula in order to expand the equation and then simplify it accordingly.
\[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\]
While simplifying the equation we need to be careful and apply the corresponding values accordingly because neglecting any of the terms changes the result of the equation completely.
\[1-\cos 2A=2{{\sin }^{2}}A\]
\[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]
Complete step by step answer:
As we already know that form the trigonometric ratios of multiple angles
\[1-\cos 2A=2{{\sin }^{2}}A\]
Here, from the transformation formula we also have
\[\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)\]
Now, by considering the given equation we get,
\[\Rightarrow {{\sin }^{2}}\dfrac{\pi }{8}+{{\sin }^{2}}\dfrac{3\pi }{8}+{{\sin }^{2}}\dfrac{5\pi }{8}+{{\sin }^{2}}\dfrac{7\pi }{8}\]
Now, on applying trigonometric ratios of multiple angles we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 1-\cos \dfrac{\pi }{4} \right)+\dfrac{1}{2}\left( 1-\cos \dfrac{3\pi }{4} \right)+\dfrac{1}{2}\left( 1-\cos \dfrac{5\pi }{4} \right)+\dfrac{1}{2}\left( 1-\cos \dfrac{7\pi }{4} \right) \\
& \left[ \because 1-\cos 2A=2{{\sin }^{2}}A \right] \\
& \\
\end{align}\]
By rearranging the terms in the above equation we get,
\[\begin{align}
& \Rightarrow \dfrac{1}{2}\left( 4-\cos \dfrac{\pi }{4}-\cos \dfrac{3\pi }{4}-\cos \dfrac{5\pi }{4}-\cos \dfrac{7\pi }{4} \right) \\
& \Rightarrow 2-\dfrac{1}{2}\left( \cos \dfrac{\pi }{4}+\cos \dfrac{3\pi }{4}+\cos \dfrac{5\pi }{4}+\cos \dfrac{7\pi }{4} \right) \\
\end{align}\]
Now, by applying transformation formula to the above equation we get,
\[\begin{align}
& \Rightarrow 2-\dfrac{1}{2}\left( 2\cos \left[ \dfrac{\frac{\pi }{4}+\dfrac{3\pi }{4}}{2} \right]\cos \left[ \dfrac{\dfrac{\pi }{4}-\dfrac{3\pi }{4}}{2} \right]+2\cos \left[ \dfrac{\dfrac{5\pi }{4}+\dfrac{7\pi }{4}}{2} \right]\cos \left[ \dfrac{\dfrac{5\pi }{4}-\dfrac{7\pi }{4}}{2} \right] \right) \\
& \left[ \because \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \right] \\
\end{align}\]
Now, on further simplifying the above expression we get,
\[\Rightarrow 2-\left( \cos \dfrac{\pi }{2}\cos \dfrac{-\pi }{4}+\cos \dfrac{3\pi }{2}\cos \dfrac{-\pi }{4} \right)\]
Let us now take the common terms out to simplify it further
\[\Rightarrow 2-\cos \dfrac{\pi }{4}\left( \cos \dfrac{\pi }{2}+\cos \dfrac{3\pi }{2} \right)\text{ }\left[ \because \cos \left( -\theta \right)=\cos \theta \right]\]
Now, let us substitute the respective values to simplify it further
\[\Rightarrow 2-\cos \dfrac{\pi }{4}\times 0\text{ }\left[ \because \cos \dfrac{\pi }{2}=\cos \dfrac{3\pi }{2}=0 \right]\]
Now, this can be rewritten as
\[\begin{align}
& \Rightarrow 2 \\
& \therefore {{\sin }^{2}}\dfrac{\pi }{8}+{{\sin }^{2}}\dfrac{3\pi }{8}+{{\sin }^{2}}\dfrac{5\pi }{8}+{{\sin }^{2}}\dfrac{7\pi }{8}=2 \\
\end{align}\]
Note:
Instead of directly writing the \[{{\sin }^{2}}A\] terms in terms of \[\cos 2A\] we can convert those terms into \[{{\cos }^{2}}A\] using the identity \[{{\sin }^{2}}A+{{\cos }^{2}}A=1\] and then convert it in terms of
\[\cos 2A\] is one of the alternate methods.
We can use the trigonometric ratios of compound angles formula in place of the transformation formula in order to expand the equation and then simplify it accordingly.
\[\cos \left( A+B \right)=\cos A\cos B-\sin A\sin B\]
While simplifying the equation we need to be careful and apply the corresponding values accordingly because neglecting any of the terms changes the result of the equation completely.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

