
How to prove \[\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x\]?
Answer
532.2k+ views
Hint: We need to remember here the basic rules of trigonometry first, mainly the formula of sum to product identities. These include formulas for \[\sin x + \sin y\], \[\sin x - \sin y\], \[\cos x + \cos y\], \[\cos x - \cos y\]. By applying these formulas, we can easily solve this question.
Complete step-by-step solution:
To prove: \[\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x\]
Proof:
First, we need to take here the LHS and RHS:
LHS\[ = \dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}}\]
RHS\[ = \cot 2x\]
First, we will try to solve LHS. In LHS also, we will try to solve the numerator first. The numerator is:
\[\Rightarrow \sin x - \sin 3x + \sin 5x - \sin 7x\]
First, we will try to make groups. We will group the first two and the last two terms, and we get:
\[ \Rightarrow (\sin x - \sin 3x) + (\sin 5x - \sin 7x)\]
Now, we will use the trigonometric formula:
\[\sin a - \sin b = 2\cos \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}\]
Now, we will put the values according to the formula, and we get:
\[ \Rightarrow (\sin x - \sin 3x) + (\sin 5x - \sin 7x) = \left( {2\cos \dfrac{{x + 3x}}{2}\sin \dfrac{{x - 3x}}{2}} \right) + \left( {2\cos \dfrac{{5x + 7x}}{2}\sin \dfrac{{5x - 7x}}{2}} \right)\]
Now, we will just simplify, and we get:
\[ \Rightarrow \left( {2\cos \dfrac{{4x}}{2}\sin \dfrac{{ - 2x}}{2}} \right) + \left( {2\cos \dfrac{{12x}}{2}\sin \dfrac{{ - 2x}}{2}} \right)\]
Now, we will cancel the terms that are similar and which are divisible, and we get:
\[ \Rightarrow \left( {2\cos (2x)\sin ( - x)} \right) + \left( {2\cos (6x)\sin ( - x)} \right)\]
When we open the brackets, we get:
\[\Rightarrow 2\cos (2x)\sin ( - x) + 2\cos (6x)\sin ( - x)\]
Now, we will try to remove the negative sign, and we get:
\[ \Rightarrow - 2\cos (2x)\sin (x) - 2\cos (6x)\sin (x)\]
Now, we will take out the common term \[ - 2\sin x\], and we get:
\[\Rightarrow - 2\sin x(\cos (2x) + \cos (6x))\]
Similarly, we will solve the denominator as well. The denominator is:
\[ \Rightarrow \cos x - \cos 3x - \cos 5x + \cos 7x\]
First, we will try to make groups. We will group the first two and the last two terms, and we get:
\[\Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x)\]
Now, we will use the trigonometric formula:
\[\Rightarrow \cos x - \cos y = - 2\sin \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}\]
Now, we will put the values according to the formula, and we get:
\[ \Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x) = \left( { - 2\sin \dfrac{{x + 3x}}{2}\sin \dfrac{{x - 3x}}{2}} \right) + \left( { - 2\sin \dfrac{{5x + 7x}}{2}\sin \dfrac{{5x - 7x}}{2}} \right)\]
Now, we will just simplify, and we get:
\[\Rightarrow \left( { - 2\sin \dfrac{{4x}}{2}\sin \dfrac{{ - 2x}}{2}} \right) + \left( { - 2\sin \dfrac{{12x}}{2}\sin \dfrac{{ - 2x}}{2}} \right)\]
Now, we will cancel the terms that are similar and which are divisible, and we get:
\[ \Rightarrow \left( { - 2\sin (2x)\sin ( - x)} \right) + \left( { - 2\sin (6x)\sin ( - x)} \right)\]
When we open the brackets, we get:
\[\Rightarrow - 2\sin (2x)\sin ( - x) - 2\sin (6x)\sin ( - x)\]
Now, we will try to remove the negative sign, and we get:
\[ \Rightarrow 2\sin (2x)\sin (x) + 2\sin (6x)\sin (x)\]
Now, we will take out the common term \[2\sin x\], and we get:
\[\Rightarrow 2\sin x(\sin (2x) + \sin (6x))\]
Now, when we rewrite our LHS, we get:
LHS\[ \Rightarrow \dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \dfrac{{ - 2\sin x(\cos (2x) + \cos (6x))}}{{2\sin x(\sin (2x) + \sin (6x))}}\]
Now, we can cancel the similar terms, and we get:
\[ \Rightarrow \dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \dfrac{{ - (\cos (2x) + \cos (6x))}}{{(\sin (2x) + \sin (6x))}}\]
Now, we will use the trigonometric formulas:
\[\cos a + \cos b = 2\cos \dfrac{{x + y}}{2}\cos \dfrac{{x - y}}{2}\]
\[\sin a - \sin b = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}\]
Now, we will put the values according to the formula, and we get:
\[\Rightarrow \dfrac{{ - (\cos (2x) + \cos (6x))}}{{(\sin (2x) + \sin (6x))}} = \dfrac{{ - \left( {2\cos \dfrac{{2x + 6x}}{2}\cos \dfrac{{2x - 6x}}{2}} \right)}}{{\left( {2\cos \dfrac{{2x + 6x}}{2}\sin \dfrac{{2x - 6x}}{2}} \right)}}\]
\[\Rightarrow \dfrac{{ - \left( {2\cos (4x)\cos ( - 2x)} \right)}}{{\left( {2\cos (4x)\sin ( - 2x)} \right)}}\]
Now, the similar terms get cancelled out, and we get:
\[\Rightarrow \dfrac{{ - \left( {2\cos ( - 2x)} \right)}}{{\left( {2\sin ( - 2x)} \right)}}\]
\[\Rightarrow \dfrac{{ - \left( {\cos ( - 2x)} \right)}}{{\left( {\sin ( - 2x)} \right)}}\]
We know that \[\cos ( - \theta ) = \cos \theta \]. So, we get:
\[ \Rightarrow \dfrac{{ - \cos 2x}}{{ - \sin 2x}}\]
\[ \Rightarrow \cot 2x\]
LHS\[ = \cot 2x\]
Hence, LHS=RHS (hence proved). Therefore \[\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x\] is proved.
Note: We need to keep a check on both the LHS and RHS while solving. In this question, when we were solving our LHS, we had to check that in what terms our RHS is present, and then according to that we need to change our LHS to prove the question. Here in the question we have used we have few trigonometric formulas to solve the problem like \[\sin a - \sin b = 2\cos \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}\] , \[\Rightarrow \cos x - \cos y = - 2\sin \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}\].
Complete step-by-step solution:
To prove: \[\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x\]
Proof:
First, we need to take here the LHS and RHS:
LHS\[ = \dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}}\]
RHS\[ = \cot 2x\]
First, we will try to solve LHS. In LHS also, we will try to solve the numerator first. The numerator is:
\[\Rightarrow \sin x - \sin 3x + \sin 5x - \sin 7x\]
First, we will try to make groups. We will group the first two and the last two terms, and we get:
\[ \Rightarrow (\sin x - \sin 3x) + (\sin 5x - \sin 7x)\]
Now, we will use the trigonometric formula:
\[\sin a - \sin b = 2\cos \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}\]
Now, we will put the values according to the formula, and we get:
\[ \Rightarrow (\sin x - \sin 3x) + (\sin 5x - \sin 7x) = \left( {2\cos \dfrac{{x + 3x}}{2}\sin \dfrac{{x - 3x}}{2}} \right) + \left( {2\cos \dfrac{{5x + 7x}}{2}\sin \dfrac{{5x - 7x}}{2}} \right)\]
Now, we will just simplify, and we get:
\[ \Rightarrow \left( {2\cos \dfrac{{4x}}{2}\sin \dfrac{{ - 2x}}{2}} \right) + \left( {2\cos \dfrac{{12x}}{2}\sin \dfrac{{ - 2x}}{2}} \right)\]
Now, we will cancel the terms that are similar and which are divisible, and we get:
\[ \Rightarrow \left( {2\cos (2x)\sin ( - x)} \right) + \left( {2\cos (6x)\sin ( - x)} \right)\]
When we open the brackets, we get:
\[\Rightarrow 2\cos (2x)\sin ( - x) + 2\cos (6x)\sin ( - x)\]
Now, we will try to remove the negative sign, and we get:
\[ \Rightarrow - 2\cos (2x)\sin (x) - 2\cos (6x)\sin (x)\]
Now, we will take out the common term \[ - 2\sin x\], and we get:
\[\Rightarrow - 2\sin x(\cos (2x) + \cos (6x))\]
Similarly, we will solve the denominator as well. The denominator is:
\[ \Rightarrow \cos x - \cos 3x - \cos 5x + \cos 7x\]
First, we will try to make groups. We will group the first two and the last two terms, and we get:
\[\Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x)\]
Now, we will use the trigonometric formula:
\[\Rightarrow \cos x - \cos y = - 2\sin \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}\]
Now, we will put the values according to the formula, and we get:
\[ \Rightarrow (\cos x - \cos 3x) - (\cos 5x - \cos 7x) = \left( { - 2\sin \dfrac{{x + 3x}}{2}\sin \dfrac{{x - 3x}}{2}} \right) + \left( { - 2\sin \dfrac{{5x + 7x}}{2}\sin \dfrac{{5x - 7x}}{2}} \right)\]
Now, we will just simplify, and we get:
\[\Rightarrow \left( { - 2\sin \dfrac{{4x}}{2}\sin \dfrac{{ - 2x}}{2}} \right) + \left( { - 2\sin \dfrac{{12x}}{2}\sin \dfrac{{ - 2x}}{2}} \right)\]
Now, we will cancel the terms that are similar and which are divisible, and we get:
\[ \Rightarrow \left( { - 2\sin (2x)\sin ( - x)} \right) + \left( { - 2\sin (6x)\sin ( - x)} \right)\]
When we open the brackets, we get:
\[\Rightarrow - 2\sin (2x)\sin ( - x) - 2\sin (6x)\sin ( - x)\]
Now, we will try to remove the negative sign, and we get:
\[ \Rightarrow 2\sin (2x)\sin (x) + 2\sin (6x)\sin (x)\]
Now, we will take out the common term \[2\sin x\], and we get:
\[\Rightarrow 2\sin x(\sin (2x) + \sin (6x))\]
Now, when we rewrite our LHS, we get:
LHS\[ \Rightarrow \dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \dfrac{{ - 2\sin x(\cos (2x) + \cos (6x))}}{{2\sin x(\sin (2x) + \sin (6x))}}\]
Now, we can cancel the similar terms, and we get:
\[ \Rightarrow \dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \dfrac{{ - (\cos (2x) + \cos (6x))}}{{(\sin (2x) + \sin (6x))}}\]
Now, we will use the trigonometric formulas:
\[\cos a + \cos b = 2\cos \dfrac{{x + y}}{2}\cos \dfrac{{x - y}}{2}\]
\[\sin a - \sin b = 2\cos \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}\]
Now, we will put the values according to the formula, and we get:
\[\Rightarrow \dfrac{{ - (\cos (2x) + \cos (6x))}}{{(\sin (2x) + \sin (6x))}} = \dfrac{{ - \left( {2\cos \dfrac{{2x + 6x}}{2}\cos \dfrac{{2x - 6x}}{2}} \right)}}{{\left( {2\cos \dfrac{{2x + 6x}}{2}\sin \dfrac{{2x - 6x}}{2}} \right)}}\]
\[\Rightarrow \dfrac{{ - \left( {2\cos (4x)\cos ( - 2x)} \right)}}{{\left( {2\cos (4x)\sin ( - 2x)} \right)}}\]
Now, the similar terms get cancelled out, and we get:
\[\Rightarrow \dfrac{{ - \left( {2\cos ( - 2x)} \right)}}{{\left( {2\sin ( - 2x)} \right)}}\]
\[\Rightarrow \dfrac{{ - \left( {\cos ( - 2x)} \right)}}{{\left( {\sin ( - 2x)} \right)}}\]
We know that \[\cos ( - \theta ) = \cos \theta \]. So, we get:
\[ \Rightarrow \dfrac{{ - \cos 2x}}{{ - \sin 2x}}\]
\[ \Rightarrow \cot 2x\]
LHS\[ = \cot 2x\]
Hence, LHS=RHS (hence proved). Therefore \[\dfrac{{\sin x - \sin 3x + \sin 5x - \sin 7x}}{{\cos x - \cos 3x - \cos 5x + \cos 7x}} = \cot 2x\] is proved.
Note: We need to keep a check on both the LHS and RHS while solving. In this question, when we were solving our LHS, we had to check that in what terms our RHS is present, and then according to that we need to change our LHS to prove the question. Here in the question we have used we have few trigonometric formulas to solve the problem like \[\sin a - \sin b = 2\cos \dfrac{{a + b}}{2}\sin \dfrac{{a - b}}{2}\] , \[\Rightarrow \cos x - \cos y = - 2\sin \dfrac{{x + y}}{2}\sin \dfrac{{x - y}}{2}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

