
How do you prove $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $ ?
Answer
561k+ views
Hint: In order to prove the given we will consider LHS and divide each terms by $ \cos x $ , and we will apply basic trigonometric identities like $ \dfrac{1}{{\cos x}} = \sec x $ , $ \dfrac{{\sin x}}{{\cos x}} = \tan x $ , $ {\sec ^2}x - {\tan ^2}x = 1 $ and algebraic identity $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $ . Then, evaluate and prove the given
Complete step-by-step answer:
We need to prove $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $
Now, let us consider the LHS,
LHS= $ \dfrac{{\cos x}}{{1 - \sin x}} $
Let us divide the terms by $ \cos x $ ,
$ = \dfrac{{\dfrac{{\cos x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}}} $
We know that $ \dfrac{1}{{\cos x}} = \sec x $ and $ \dfrac{{\sin x}}{{\cos x}} = \tan x $ , then we have,
$ = \dfrac{1}{{\sec x - \tan x}} $
Now, we also know that $ {\sec ^2}x - {\tan ^2}x = 1 $
Therefore, we have,
$ = \dfrac{{{{\sec }^2}x - {{\tan }^2}x}}{{\sec x - \tan x}} $
We know that $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
Thus, LHS $ = \dfrac{{\left( {\sec x + \tan x} \right)\left( {\sec x - \tan x} \right)}}{{\sec x - \tan x}} $
Now, by cancelling the common terms, we have,
LHS $ = \sec x + \tan x $ =RHS
Hence proved that $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $ .
Alternate method:
Now, let us consider the LHS,
LHS= $ \dfrac{{\cos x}}{{1 - \sin x}} $
Let us multiply the numerator and the denominator by $ 1 + \sin x $ ,
$ = \dfrac{{\cos x}}{{1 - \sin x}} \times \dfrac{{1 + \sin x}}{{1 + \sin x}} $
$ = \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}} $
By $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $ , we have,
$ = \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{{1^2} - {{\sin }^2}x}} $
Now, by $ {\sin ^2}x + {\cos ^2}x = 1 $ , we have,
$ = \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{{{\cos }^2}x}} $
Now, cancelling $ \cos x $ , we have,
$ = \dfrac{{\left( {1 + \sin x} \right)}}{{\cos x}} $
$ = \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}} $
We know that $ \dfrac{1}{{\cos x}} = \sec x $ and $ \dfrac{{\sin x}}{{\cos x}} = \tan x $ , then we have,
LHS $ = \sec x + \tan x $ =RHS
Hence proved that $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $ .
So, the correct answer is “ $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $ ”.
Note: In this question it is important to note that whenever we come across these kinds of questions, we always start from the more complex side. This is because it is a lot easier to eliminate terms to make a complex function simple than to find ways to introduce terms to make a simple function complex. Take one step, watch one step. Manipulation of identities and formulas as per need is the most important aspect here.
Complete step-by-step answer:
We need to prove $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $
Now, let us consider the LHS,
LHS= $ \dfrac{{\cos x}}{{1 - \sin x}} $
Let us divide the terms by $ \cos x $ ,
$ = \dfrac{{\dfrac{{\cos x}}{{\cos x}}}}{{\dfrac{1}{{\cos x}} - \dfrac{{\sin x}}{{\cos x}}}} $
We know that $ \dfrac{1}{{\cos x}} = \sec x $ and $ \dfrac{{\sin x}}{{\cos x}} = \tan x $ , then we have,
$ = \dfrac{1}{{\sec x - \tan x}} $
Now, we also know that $ {\sec ^2}x - {\tan ^2}x = 1 $
Therefore, we have,
$ = \dfrac{{{{\sec }^2}x - {{\tan }^2}x}}{{\sec x - \tan x}} $
We know that $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $
Thus, LHS $ = \dfrac{{\left( {\sec x + \tan x} \right)\left( {\sec x - \tan x} \right)}}{{\sec x - \tan x}} $
Now, by cancelling the common terms, we have,
LHS $ = \sec x + \tan x $ =RHS
Hence proved that $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $ .
Alternate method:
Now, let us consider the LHS,
LHS= $ \dfrac{{\cos x}}{{1 - \sin x}} $
Let us multiply the numerator and the denominator by $ 1 + \sin x $ ,
$ = \dfrac{{\cos x}}{{1 - \sin x}} \times \dfrac{{1 + \sin x}}{{1 + \sin x}} $
$ = \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{\left( {1 - \sin x} \right)\left( {1 + \sin x} \right)}} $
By $ {a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right) $ , we have,
$ = \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{{1^2} - {{\sin }^2}x}} $
Now, by $ {\sin ^2}x + {\cos ^2}x = 1 $ , we have,
$ = \dfrac{{\cos x\left( {1 + \sin x} \right)}}{{{{\cos }^2}x}} $
Now, cancelling $ \cos x $ , we have,
$ = \dfrac{{\left( {1 + \sin x} \right)}}{{\cos x}} $
$ = \dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}} $
We know that $ \dfrac{1}{{\cos x}} = \sec x $ and $ \dfrac{{\sin x}}{{\cos x}} = \tan x $ , then we have,
LHS $ = \sec x + \tan x $ =RHS
Hence proved that $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $ .
So, the correct answer is “ $ \dfrac{{\cos x}}{{1 - \sin x}} = \sec x + \tan x $ ”.
Note: In this question it is important to note that whenever we come across these kinds of questions, we always start from the more complex side. This is because it is a lot easier to eliminate terms to make a complex function simple than to find ways to introduce terms to make a simple function complex. Take one step, watch one step. Manipulation of identities and formulas as per need is the most important aspect here.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

