
How do you prove $\dfrac{{1 - \sin 2x}}{{\cos 2x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}$?
Answer
495k+ views
Hint:We will use the double angle trigonometric formulas to simplify any one side of the equation or both sides so that the result for both should come same and therefore, we can prove that L.H.S. of the equation is equal to the R.H.S.
Complete step by step solution:
We have to prove $\dfrac{{1 - \sin 2x}}{{\cos 2x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}$ where
L.H.S. = $\dfrac{{1 - \sin 2x}}{{\cos 2x}}$ and
R.H.S. = $\dfrac{{\cos 2x}}{{1 + \sin 2x}}$
First, we will solve the L.H.S. of the equation,
L.H.S. = $\dfrac{{1 - \sin 2x}}{{\cos 2x}}$
Expanding the identities $\sin 2x = 2\sin x\cos x$ and $\cos 2x = {\cos ^2}x - {\sin ^2}x$,
L.H.S. = $\dfrac{{1 - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
In the numerator, we write $1 = {\cos ^2}x + {\sin ^2}x$,
L.H.S. = $\dfrac{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Using the formula, ${a^2} - 2ab + {b^2} = {(a - b)^2}$, we can write the numerator as,
L.H.S. = $\dfrac{{{{(\cos x - \sin x)}^2}}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Using the formula, ${a^2} - {b^2} = (a + b)(a - b)$, we can write the denominator as,
L.H.S. = $\dfrac{{{{(\cos x - \sin x)}^2}}}{{(\cos x - \sin x)(\cos x + \sin x)}}$
Cancelling $\cos x - \sin x$ from both numerator and denominator,
L.H.S. = $\dfrac{{(\cos x - \sin x)}}{{(\cos x + \sin x)}}$
Multiplying and dividing equation by $\cos x + \sin x$, we get,
L.H.S. = $\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} \times \dfrac{{\cos x + \sin x}}{{\cos x + \sin x}}$
Multiplying the numerator and denominator part,
L.H.S. = $\dfrac{{(\cos x - \sin x)(\cos x + \sin x)}}{{(\cos x + \sin x)(\cos x + \sin x)}}$
Using the formula, $(a + b)(a - b) = {a^2} - {b^2}$in the numerator, we get,
L.H.S. = $\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{(\cos x + \sin x)(\cos x + \sin x)}}$
Using the formula, $a.a = {a^2}$ in the denominator, we get,
L.H.S. = $\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{(\cos x + \sin x)}^2}}}$
Expanding the denominator using the formula ${(a + b)^2} = {a^2} + 2ab + {b^2}$ ,
L.H.S. = $\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x + {{\sin }^2}x + 2\sin x\cos x}}$
We know that, the trigonometric identity ${\cos ^2}x + {\sin ^2}x = 1$, so substituting that,
L.H.S. = $\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{1 + 2\sin x\cos x}}$
The term ${\cos ^2}x - {\sin ^2}x$ is a double angle formula of $\cos 2x$, so substituting ${\cos ^2}x - {\sin ^2}x = \cos 2x$, we get,
L.H.S. = $\dfrac{{\cos 2x}}{{1 + 2\sin x\cos x}}$
We know that $\sin 2x = 2\sin x\cos x$ which is double angle formula, therefore, substituting this value,
L.H.S. = $\dfrac{{\cos 2x}}{{1 + \sin 2x}}$ = R.H.S.
Therefore, we have proved L.H.S. = R.H.S.
Hence proved $\dfrac{{1 - \sin 2x}}{{\cos 2x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}$.
Note:
We can also start by simplifying the right-hand side with the same method as we did above. While simplifying trigonometric problems, one should have a proper knowledge of all the trigonometric formulas and identities and basic arithmetic formulas such as $(a + b)(a - b) = {a^2} - {b^2}$, ${(a + b)^2} = {a^2} + 2ab + {b^2}$ , etc.
Complete step by step solution:
We have to prove $\dfrac{{1 - \sin 2x}}{{\cos 2x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}$ where
L.H.S. = $\dfrac{{1 - \sin 2x}}{{\cos 2x}}$ and
R.H.S. = $\dfrac{{\cos 2x}}{{1 + \sin 2x}}$
First, we will solve the L.H.S. of the equation,
L.H.S. = $\dfrac{{1 - \sin 2x}}{{\cos 2x}}$
Expanding the identities $\sin 2x = 2\sin x\cos x$ and $\cos 2x = {\cos ^2}x - {\sin ^2}x$,
L.H.S. = $\dfrac{{1 - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
In the numerator, we write $1 = {\cos ^2}x + {\sin ^2}x$,
L.H.S. = $\dfrac{{{{\cos }^2}x + {{\sin }^2}x - 2\sin x\cos x}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Using the formula, ${a^2} - 2ab + {b^2} = {(a - b)^2}$, we can write the numerator as,
L.H.S. = $\dfrac{{{{(\cos x - \sin x)}^2}}}{{{{\cos }^2}x - {{\sin }^2}x}}$
Using the formula, ${a^2} - {b^2} = (a + b)(a - b)$, we can write the denominator as,
L.H.S. = $\dfrac{{{{(\cos x - \sin x)}^2}}}{{(\cos x - \sin x)(\cos x + \sin x)}}$
Cancelling $\cos x - \sin x$ from both numerator and denominator,
L.H.S. = $\dfrac{{(\cos x - \sin x)}}{{(\cos x + \sin x)}}$
Multiplying and dividing equation by $\cos x + \sin x$, we get,
L.H.S. = $\dfrac{{\cos x - \sin x}}{{\cos x + \sin x}} \times \dfrac{{\cos x + \sin x}}{{\cos x + \sin x}}$
Multiplying the numerator and denominator part,
L.H.S. = $\dfrac{{(\cos x - \sin x)(\cos x + \sin x)}}{{(\cos x + \sin x)(\cos x + \sin x)}}$
Using the formula, $(a + b)(a - b) = {a^2} - {b^2}$in the numerator, we get,
L.H.S. = $\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{(\cos x + \sin x)(\cos x + \sin x)}}$
Using the formula, $a.a = {a^2}$ in the denominator, we get,
L.H.S. = $\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{(\cos x + \sin x)}^2}}}$
Expanding the denominator using the formula ${(a + b)^2} = {a^2} + 2ab + {b^2}$ ,
L.H.S. = $\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{{{\cos }^2}x + {{\sin }^2}x + 2\sin x\cos x}}$
We know that, the trigonometric identity ${\cos ^2}x + {\sin ^2}x = 1$, so substituting that,
L.H.S. = $\dfrac{{{{\cos }^2}x - {{\sin }^2}x}}{{1 + 2\sin x\cos x}}$
The term ${\cos ^2}x - {\sin ^2}x$ is a double angle formula of $\cos 2x$, so substituting ${\cos ^2}x - {\sin ^2}x = \cos 2x$, we get,
L.H.S. = $\dfrac{{\cos 2x}}{{1 + 2\sin x\cos x}}$
We know that $\sin 2x = 2\sin x\cos x$ which is double angle formula, therefore, substituting this value,
L.H.S. = $\dfrac{{\cos 2x}}{{1 + \sin 2x}}$ = R.H.S.
Therefore, we have proved L.H.S. = R.H.S.
Hence proved $\dfrac{{1 - \sin 2x}}{{\cos 2x}} = \dfrac{{\cos 2x}}{{1 + \sin 2x}}$.
Note:
We can also start by simplifying the right-hand side with the same method as we did above. While simplifying trigonometric problems, one should have a proper knowledge of all the trigonometric formulas and identities and basic arithmetic formulas such as $(a + b)(a - b) = {a^2} - {b^2}$, ${(a + b)^2} = {a^2} + 2ab + {b^2}$ , etc.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

