
How do you prove $ \cosh (2x) = {\cosh ^2}x + {\sinh ^2}x $ ?
Answer
546.6k+ views
Hint: First we will evaluate the right-hand of the equation and then further the left-hand side of the equation. We will use the following formula
$
\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} \\
\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} \;
$
to evaluate and then we will further simplify this expression form and hence evaluate the value of the term.
Complete step-by-step answer:
We will start off by using the formula
$
\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} \\
\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} \\
$ .
Here, we will start by evaluating the right-hand side of the equation.
Hence, the equation will become,
\[
= {\cosh ^2}x + {\sinh ^2}x \\
= {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2} + {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2} \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right) + \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right) \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2 + {e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right) \\
= \left( {\dfrac{{2{e^{2x}} + 2{e^{ - 2x}}}}{4}} \right) \\
= 2\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{2}} \right) \\
= \cosh (2x) \;
\]
Hence, LHS = $ \cosh (2x) $
And we know that RHS = $ \cosh (2x) $
Therefore, RHS=LHS
Hence, proved.
Note: n mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola
$
\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} \\
\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} \;
$
to evaluate and then we will further simplify this expression form and hence evaluate the value of the term.
Complete step-by-step answer:
We will start off by using the formula
$
\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} \\
\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} \\
$ .
Here, we will start by evaluating the right-hand side of the equation.
Hence, the equation will become,
\[
= {\cosh ^2}x + {\sinh ^2}x \\
= {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2} + {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2} \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right) + \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right) \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2 + {e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right) \\
= \left( {\dfrac{{2{e^{2x}} + 2{e^{ - 2x}}}}{4}} \right) \\
= 2\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{2}} \right) \\
= \cosh (2x) \;
\]
Hence, LHS = $ \cosh (2x) $
And we know that RHS = $ \cosh (2x) $
Therefore, RHS=LHS
Hence, proved.
Note: n mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

