
How do you prove $ \cosh (2x) = {\cosh ^2}x + {\sinh ^2}x $ ?
Answer
559.2k+ views
Hint: First we will evaluate the right-hand of the equation and then further the left-hand side of the equation. We will use the following formula
$
\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} \\
\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} \;
$
to evaluate and then we will further simplify this expression form and hence evaluate the value of the term.
Complete step-by-step answer:
We will start off by using the formula
$
\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} \\
\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} \\
$ .
Here, we will start by evaluating the right-hand side of the equation.
Hence, the equation will become,
\[
= {\cosh ^2}x + {\sinh ^2}x \\
= {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2} + {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2} \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right) + \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right) \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2 + {e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right) \\
= \left( {\dfrac{{2{e^{2x}} + 2{e^{ - 2x}}}}{4}} \right) \\
= 2\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{2}} \right) \\
= \cosh (2x) \;
\]
Hence, LHS = $ \cosh (2x) $
And we know that RHS = $ \cosh (2x) $
Therefore, RHS=LHS
Hence, proved.
Note: n mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola
$
\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} \\
\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} \;
$
to evaluate and then we will further simplify this expression form and hence evaluate the value of the term.
Complete step-by-step answer:
We will start off by using the formula
$
\cosh x = \dfrac{{{e^x} + {e^{ - x}}}}{2} \\
\sinh x = \dfrac{{{e^x} - {e^{ - x}}}}{2} \\
$ .
Here, we will start by evaluating the right-hand side of the equation.
Hence, the equation will become,
\[
= {\cosh ^2}x + {\sinh ^2}x \\
= {\left( {\dfrac{{{e^x} + {e^{ - x}}}}{2}} \right)^2} + {\left( {\dfrac{{{e^x} - {e^{ - x}}}}{2}} \right)^2} \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2}}{4}} \right) + \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right) \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}} + 2 + {e^{2x}} + {e^{ - 2x}} - 2}}{4}} \right) \\
= \left( {\dfrac{{2{e^{2x}} + 2{e^{ - 2x}}}}{4}} \right) \\
= 2\left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{4}} \right) \\
= \left( {\dfrac{{{e^{2x}} + {e^{ - 2x}}}}{2}} \right) \\
= \cosh (2x) \;
\]
Hence, LHS = $ \cosh (2x) $
And we know that RHS = $ \cosh (2x) $
Therefore, RHS=LHS
Hence, proved.
Note: n mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the unit hyperbola
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

