
Prove: $ \cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 $ .
Answer
531.6k+ views
Hint: We use the formulas for the trigonometric function of multiple angles where $ \cos 3x=4{{\cos }^{3}}x-3\cos x $ and $ \cos 2x=2{{\cos }^{2}}x-1 $ . We also use the cubic form of $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ . We complete the multiplication to find the proof of the given theorem.
Complete step by step solution:
We have to prove that $ \cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 $ .
We apply the multiple angle formula for the cos where $ \cos 3x=4{{\cos }^{3}}x-3\cos x $ .
We take $ 2x $ in place of $ x $ . We get $ \cos 6x=4{{\cos }^{3}}\left( 2x \right)-3\cos \left( 2x \right) $ .
Now we replace the value of $ \cos 2x $ with the theorem of $ \cos 2x=2{{\cos }^{2}}x-1 $ .
We have $ \cos 6x=4{{\cos }^{3}}\left( 2x \right)-3\cos \left( 2x \right)=4{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}-3\left( 2{{\cos }^{2}}x-1 \right) $ .
We now break the higher power terms into their simplest form.
We have $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Therefore, $ {{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}=8{{\cos }^{6}}x-12{{\cos }^{4}}x+6{{\cos }^{2}}x-1 $ .
\[
\cos 6x =4{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}-3\left( 2{{\cos }^{2}}x-1 \right) \\
=4\left( 8{{\cos }^{6}}x-12{{\cos }^{4}}x+6{{\cos }^{2}}x-1 \right)-3\left( 2{{\cos }^{2}}x-1 \right) \\
=32{{\cos }^{6}}x-48{{\cos }^{4}}x+24{{\cos }^{2}}x-4-6{{\cos }^{2}}x+3 \\
=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 \\
\]
Thus proved, $ \cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 $ .
Note: instead of breaking the multiple angle theorem as $ \cos 6x=\cos \left\{ 3\times \left( 2x \right) \right\} $ , we can take $ \cos 6x=\cos \left\{ 2\times \left( 3x \right) \right\} $ . It is the same in both cases and the final proof is also the same.
Complete step by step solution:
We have to prove that $ \cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 $ .
We apply the multiple angle formula for the cos where $ \cos 3x=4{{\cos }^{3}}x-3\cos x $ .
We take $ 2x $ in place of $ x $ . We get $ \cos 6x=4{{\cos }^{3}}\left( 2x \right)-3\cos \left( 2x \right) $ .
Now we replace the value of $ \cos 2x $ with the theorem of $ \cos 2x=2{{\cos }^{2}}x-1 $ .
We have $ \cos 6x=4{{\cos }^{3}}\left( 2x \right)-3\cos \left( 2x \right)=4{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}-3\left( 2{{\cos }^{2}}x-1 \right) $ .
We now break the higher power terms into their simplest form.
We have $ {{\left( a-b \right)}^{3}}={{a}^{3}}-3{{a}^{2}}b+3a{{b}^{2}}-{{b}^{3}} $ .
Therefore, $ {{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}=8{{\cos }^{6}}x-12{{\cos }^{4}}x+6{{\cos }^{2}}x-1 $ .
\[
\cos 6x =4{{\left( 2{{\cos }^{2}}x-1 \right)}^{3}}-3\left( 2{{\cos }^{2}}x-1 \right) \\
=4\left( 8{{\cos }^{6}}x-12{{\cos }^{4}}x+6{{\cos }^{2}}x-1 \right)-3\left( 2{{\cos }^{2}}x-1 \right) \\
=32{{\cos }^{6}}x-48{{\cos }^{4}}x+24{{\cos }^{2}}x-4-6{{\cos }^{2}}x+3 \\
=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 \\
\]
Thus proved, $ \cos 6x=32{{\cos }^{6}}x-48{{\cos }^{4}}x+18{{\cos }^{2}}x-1 $ .
Note: instead of breaking the multiple angle theorem as $ \cos 6x=\cos \left\{ 3\times \left( 2x \right) \right\} $ , we can take $ \cos 6x=\cos \left\{ 2\times \left( 3x \right) \right\} $ . It is the same in both cases and the final proof is also the same.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

