
How do you prove $\cos 36\cdot \cos 72=\dfrac{1}{4}$?
Answer
541.8k+ views
Hint: For proving the given expression we have to use the identity $2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$ on the LHS. Then, with the help of the trigonometric identities \[\cos \left( -x \right)=\cos x\] and $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $ we will obtain the LHS as a difference of two cosines. Finally, on using the trigonometric identity $\cos 2A=2{{\cos }^{2}}A-1$ and the algebraic identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ we will be able to prove the LHS to be equal to the RHS.
Complete step by step answer:
The expression to be proved is given in the question as
$\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\dfrac{1}{4}$
Considering the LHS of the above equation, we have
$\Rightarrow LHS=\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}$
Multiplying and dividing the above expression by $2$ we get
$\Rightarrow LHS=\dfrac{2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}}{2}.......(i)$
Now, we know the trigonometric identity
$2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$
Substituting \[A={{36}^{\circ }}\] and \[B={{72}^{\circ }}\] in the above identity, we get
$\begin{align}
& \Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{36}^{\circ }}+{{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }}-{{72}^{\circ }} \right) \\
& \Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{108}^{\circ }} \right)+\cos \left( -{{36}^{\circ }} \right) \\
\end{align}$
Now, we know that \[\cos \left( -x \right)=\cos x\]. So the above equation can be written as
$\Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{108}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right)$
Substituting this in the equation (i) we get
\[\Rightarrow LHS=\dfrac{1}{2}\left( \cos \left( {{108}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right)\]
Now, writing the angle \[{{108}^{\circ }}={{180}^{\circ }}-{{72}^{\circ }}\] we get
\[\Rightarrow LHS=\dfrac{1}{2}\left( \cos \left( {{180}^{\circ }}-{{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right)\]
Now, we know that $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $. So the above equation can be written as
\[\begin{align}
& \Rightarrow LHS=\dfrac{1}{2}\left( -\cos \left( {{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right) \\
& \Rightarrow LHS=\dfrac{1}{2}\left( \cos {{36}^{\circ }}-\cos {{72}^{\circ }} \right) \\
\end{align}\]
Now, let $x=\cos {{36}^{\circ }}$ and $y=\cos {{72}^{\circ }}$. Putting these above, we get
\[\Rightarrow LHS=\dfrac{1}{2}\left( x-y \right)...........(ii)\]
We know that $\cos 2A=2{{\cos }^{2}}A-1$.
Substituting $A={{36}^{\circ }}$ in the above identity, we get
\[\begin{align}
& \Rightarrow \cos 2\left( {{36}^{\circ }} \right)=2{{\cos }^{2}}{{36}^{\circ }}-1 \\
& \Rightarrow \cos {{72}^{\circ }}=2{{\cos }^{2}}{{36}^{\circ }}-1 \\
& \Rightarrow y=2{{x}^{2}}-1...........(iii) \\
\end{align}\]
Similarly, substituting $A={{72}^{\circ }}$ in the above identity, we get
\[\begin{align}
& \Rightarrow \cos 2\left( {{72}^{\circ }} \right)=2{{\cos }^{2}}{{72}^{\circ }}-1 \\
& \Rightarrow \cos {{144}^{\circ }}=2{{\cos }^{2}}{{72}^{\circ }}-1 \\
& \Rightarrow \cos {{144}^{\circ }}=2{{y}^{2}}-1 \\
\end{align}\]
Now, writing the angle \[{{144}^{\circ }}={{180}^{\circ }}-{{36}^{\circ }}\] in the above equation, we get
\[\Rightarrow \cos \left( {{180}^{\circ }}-{{36}^{\circ }} \right)=2{{y}^{2}}-1\]
Now, from the identity $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $ we can write the above equation as
\[\begin{align}
& \Rightarrow -\cos {{36}^{\circ }}=2{{y}^{2}}-1 \\
& \Rightarrow -x=2{{y}^{2}}-1...........(iv) \\
\end{align}\]
Subtracting (iv) from (iii) we get
$\begin{align}
& \Rightarrow y-\left( -x \right)=2{{x}^{2}}-1-\left( 2{{y}^{2}}-1 \right) \\
& \Rightarrow y+x=2{{x}^{2}}-2{{y}^{2}}-1+1 \\
& \Rightarrow y-\left( -x \right)=2{{x}^{2}}-1-\left( 2{{y}^{2}}-1 \right) \\
& \Rightarrow y+x=2\left( {{x}^{2}}-{{y}^{2}} \right) \\
\end{align}$
Now, from the identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ we write the above equation as
$\begin{align}
& \Rightarrow \left( y+x \right)=2\left( x+y \right)\left( x-y \right) \\
& \Rightarrow \left( x+y \right)=2\left( x+y \right)\left( x-y \right) \\
\end{align}$
Subtracting $\left( x+y \right)$ from both the sides, we get
\[\begin{align}
& \Rightarrow \left( x+y \right)-\left( x+y \right)=2\left( x+y \right)\left( x-y \right)-\left( x+y \right) \\
& \Rightarrow 0=\left( x+y \right)\left( 2\left( x-y \right)-1 \right) \\
& \Rightarrow \left( x+y \right)\left( 2\left( x-y \right)-1 \right)=0 \\
\end{align}\]
On solving we get
$\left( x+y \right)=0$ and $2\left( x-y \right)-1=0$
We have $x=\cos {{36}^{\circ }}$ and $y=\cos {{72}^{\circ }}$. Since both the angles are less than ${{90}^{\circ }}$, so $\left( x+y \right)\ne 0$. Thus, we have
$\begin{align}
& \Rightarrow 2\left( x-y \right)-1=0 \\
& \Rightarrow \left( x-y \right)=\dfrac{1}{2} \\
\end{align}$
Substituting this in (ii), we get
$\begin{align}
& \Rightarrow LHS=\dfrac{1}{2}\left( \dfrac{1}{2} \right) \\
& \Rightarrow LHS=\dfrac{1}{4} \\
& \Rightarrow LHS=RHS \\
\end{align}$
Hence, the given expression $\cos 36\cdot \cos 72=\dfrac{1}{4}$ is proved.
Note: For solving this question, we need to have a fair idea regarding the trigonometric identities used in the above solution. Also, we must not be confused regarding the negative sign appearing in the identity $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $. The angle ${{180}^{\circ }}-\theta $ belongs to the second quadrant, where the cosine function is negative. This justifies the negative sign present in the identity.
Complete step by step answer:
The expression to be proved is given in the question as
$\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\dfrac{1}{4}$
Considering the LHS of the above equation, we have
$\Rightarrow LHS=\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}$
Multiplying and dividing the above expression by $2$ we get
$\Rightarrow LHS=\dfrac{2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}}{2}.......(i)$
Now, we know the trigonometric identity
$2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$
Substituting \[A={{36}^{\circ }}\] and \[B={{72}^{\circ }}\] in the above identity, we get
$\begin{align}
& \Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{36}^{\circ }}+{{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }}-{{72}^{\circ }} \right) \\
& \Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{108}^{\circ }} \right)+\cos \left( -{{36}^{\circ }} \right) \\
\end{align}$
Now, we know that \[\cos \left( -x \right)=\cos x\]. So the above equation can be written as
$\Rightarrow 2\cos {{36}^{\circ }}\cdot \cos {{72}^{\circ }}=\cos \left( {{108}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right)$
Substituting this in the equation (i) we get
\[\Rightarrow LHS=\dfrac{1}{2}\left( \cos \left( {{108}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right)\]
Now, writing the angle \[{{108}^{\circ }}={{180}^{\circ }}-{{72}^{\circ }}\] we get
\[\Rightarrow LHS=\dfrac{1}{2}\left( \cos \left( {{180}^{\circ }}-{{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right)\]
Now, we know that $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $. So the above equation can be written as
\[\begin{align}
& \Rightarrow LHS=\dfrac{1}{2}\left( -\cos \left( {{72}^{\circ }} \right)+\cos \left( {{36}^{\circ }} \right) \right) \\
& \Rightarrow LHS=\dfrac{1}{2}\left( \cos {{36}^{\circ }}-\cos {{72}^{\circ }} \right) \\
\end{align}\]
Now, let $x=\cos {{36}^{\circ }}$ and $y=\cos {{72}^{\circ }}$. Putting these above, we get
\[\Rightarrow LHS=\dfrac{1}{2}\left( x-y \right)...........(ii)\]
We know that $\cos 2A=2{{\cos }^{2}}A-1$.
Substituting $A={{36}^{\circ }}$ in the above identity, we get
\[\begin{align}
& \Rightarrow \cos 2\left( {{36}^{\circ }} \right)=2{{\cos }^{2}}{{36}^{\circ }}-1 \\
& \Rightarrow \cos {{72}^{\circ }}=2{{\cos }^{2}}{{36}^{\circ }}-1 \\
& \Rightarrow y=2{{x}^{2}}-1...........(iii) \\
\end{align}\]
Similarly, substituting $A={{72}^{\circ }}$ in the above identity, we get
\[\begin{align}
& \Rightarrow \cos 2\left( {{72}^{\circ }} \right)=2{{\cos }^{2}}{{72}^{\circ }}-1 \\
& \Rightarrow \cos {{144}^{\circ }}=2{{\cos }^{2}}{{72}^{\circ }}-1 \\
& \Rightarrow \cos {{144}^{\circ }}=2{{y}^{2}}-1 \\
\end{align}\]
Now, writing the angle \[{{144}^{\circ }}={{180}^{\circ }}-{{36}^{\circ }}\] in the above equation, we get
\[\Rightarrow \cos \left( {{180}^{\circ }}-{{36}^{\circ }} \right)=2{{y}^{2}}-1\]
Now, from the identity $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $ we can write the above equation as
\[\begin{align}
& \Rightarrow -\cos {{36}^{\circ }}=2{{y}^{2}}-1 \\
& \Rightarrow -x=2{{y}^{2}}-1...........(iv) \\
\end{align}\]
Subtracting (iv) from (iii) we get
$\begin{align}
& \Rightarrow y-\left( -x \right)=2{{x}^{2}}-1-\left( 2{{y}^{2}}-1 \right) \\
& \Rightarrow y+x=2{{x}^{2}}-2{{y}^{2}}-1+1 \\
& \Rightarrow y-\left( -x \right)=2{{x}^{2}}-1-\left( 2{{y}^{2}}-1 \right) \\
& \Rightarrow y+x=2\left( {{x}^{2}}-{{y}^{2}} \right) \\
\end{align}$
Now, from the identity ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ we write the above equation as
$\begin{align}
& \Rightarrow \left( y+x \right)=2\left( x+y \right)\left( x-y \right) \\
& \Rightarrow \left( x+y \right)=2\left( x+y \right)\left( x-y \right) \\
\end{align}$
Subtracting $\left( x+y \right)$ from both the sides, we get
\[\begin{align}
& \Rightarrow \left( x+y \right)-\left( x+y \right)=2\left( x+y \right)\left( x-y \right)-\left( x+y \right) \\
& \Rightarrow 0=\left( x+y \right)\left( 2\left( x-y \right)-1 \right) \\
& \Rightarrow \left( x+y \right)\left( 2\left( x-y \right)-1 \right)=0 \\
\end{align}\]
On solving we get
$\left( x+y \right)=0$ and $2\left( x-y \right)-1=0$
We have $x=\cos {{36}^{\circ }}$ and $y=\cos {{72}^{\circ }}$. Since both the angles are less than ${{90}^{\circ }}$, so $\left( x+y \right)\ne 0$. Thus, we have
$\begin{align}
& \Rightarrow 2\left( x-y \right)-1=0 \\
& \Rightarrow \left( x-y \right)=\dfrac{1}{2} \\
\end{align}$
Substituting this in (ii), we get
$\begin{align}
& \Rightarrow LHS=\dfrac{1}{2}\left( \dfrac{1}{2} \right) \\
& \Rightarrow LHS=\dfrac{1}{4} \\
& \Rightarrow LHS=RHS \\
\end{align}$
Hence, the given expression $\cos 36\cdot \cos 72=\dfrac{1}{4}$ is proved.
Note: For solving this question, we need to have a fair idea regarding the trigonometric identities used in the above solution. Also, we must not be confused regarding the negative sign appearing in the identity $\cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta $. The angle ${{180}^{\circ }}-\theta $ belongs to the second quadrant, where the cosine function is negative. This justifies the negative sign present in the identity.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

