
Prove $1 + \omega + {\omega ^2} = 0$
Answer
531.3k+ views
Hint:
Here, we will try to find the three cube roots of unity where one of them will be a real root and the other two will be imaginary roots. When we will add the squares of these three roots together, we will get a 0. Hence, by substituting the imaginary roots by omega and square of omega, we will be able to prove the given identity.
Formula Used:
$\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$
Determinant, $D = {b^2} - 4ac$
Quadratic formula, $z = \dfrac{{ - b \pm \sqrt D }}{{2a}}$
Complete step by step solution:
In order to prove the given identity,
Let us assume the cube root of unity or 1 as:
$\sqrt[3]{1} = z$
Cubing both sides, we get
$ \Rightarrow 1 = {z^3}$
Subtracting 1 from both the sides, we get
$ \Rightarrow {z^3} - 1 = 0$
Now, using the formula $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$
$ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0$
Therefore, either $\left( {z - 1} \right) = 0$
$ \Rightarrow z = 1$
Or, $\left( {{z^2} + z + 1} \right) = 0$
Comparing with $\left( {a{x^2} + bx + c} \right) = 0$
Here, $a = 1$, $b = 1$ and $c = 1$
Now, Determinant, $D = {b^2} - 4ac$
Hence, for $\left( {{z^2} + z + 1} \right) = 0$,
$D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3$
Now, using quadratic formula,
$z = \dfrac{{ - b \pm \sqrt D }}{{2a}}$
Here, $a = 1$, $b = 1$and $c = 1$ and $D = - 3$
$ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}$
This can be written as:
$ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}$
Therefore, the three cube roots of unity are:
$1$, $\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}$ and $\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}$
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
Here, $\omega $ represents the imaginary cube roots.
$ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0$
$ \Rightarrow 1 + \omega + {\omega ^2} = 0$
Here, $\omega = \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}$
And, ${\omega ^2} = \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}$
Therefore,
$1 + \omega + {\omega ^2} = 0$
Hence, proved
Note:
We should know that the cube root of any number is that number which when multiplied two times by itself gives the same number. Hence, the cube root of unity means that when a number is raised to the power 3, it gives the answer 1. The values of cube roots of unity are. Here, one root is a real number and the other two are the imaginary or complex numbers. Hence, we represent the imaginary numbers as $\omega $ and ${\omega ^2}$
Here, we will try to find the three cube roots of unity where one of them will be a real root and the other two will be imaginary roots. When we will add the squares of these three roots together, we will get a 0. Hence, by substituting the imaginary roots by omega and square of omega, we will be able to prove the given identity.
Formula Used:
$\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$
Determinant, $D = {b^2} - 4ac$
Quadratic formula, $z = \dfrac{{ - b \pm \sqrt D }}{{2a}}$
Complete step by step solution:
In order to prove the given identity,
Let us assume the cube root of unity or 1 as:
$\sqrt[3]{1} = z$
Cubing both sides, we get
$ \Rightarrow 1 = {z^3}$
Subtracting 1 from both the sides, we get
$ \Rightarrow {z^3} - 1 = 0$
Now, using the formula $\left( {{a^3} - {b^3}} \right) = \left( {a - b} \right)\left( {{a^2} + {b^2} + ab} \right)$
$ \Rightarrow \left( {z - 1} \right)\left( {{z^2} + z + 1} \right) = 0$
Therefore, either $\left( {z - 1} \right) = 0$
$ \Rightarrow z = 1$
Or, $\left( {{z^2} + z + 1} \right) = 0$
Comparing with $\left( {a{x^2} + bx + c} \right) = 0$
Here, $a = 1$, $b = 1$ and $c = 1$
Now, Determinant, $D = {b^2} - 4ac$
Hence, for $\left( {{z^2} + z + 1} \right) = 0$,
$D = {\left( 1 \right)^2} - 4 \times 1 = 1 - 4 = - 3$
Now, using quadratic formula,
$z = \dfrac{{ - b \pm \sqrt D }}{{2a}}$
Here, $a = 1$, $b = 1$and $c = 1$ and $D = - 3$
$ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt { - 3} }}{2}$
This can be written as:
$ \Rightarrow z = \dfrac{{ - 1 \pm \sqrt 3 i}}{2}$
Therefore, the three cube roots of unity are:
$1$, $\dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}$ and $\dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}$
Now, according to the property, the sum of these three cube roots of unity will be equal to 0.
Here, $\omega $ represents the imaginary cube roots.
$ \Rightarrow 1 + \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2} + \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2} = 1 - 1 + 0 = 0$
$ \Rightarrow 1 + \omega + {\omega ^2} = 0$
Here, $\omega = \dfrac{{ - 1}}{2} + \dfrac{{\sqrt 3 i}}{2}$
And, ${\omega ^2} = \dfrac{{ - 1}}{2} - \dfrac{{\sqrt 3 i}}{2}$
Therefore,
$1 + \omega + {\omega ^2} = 0$
Hence, proved
Note:
We should know that the cube root of any number is that number which when multiplied two times by itself gives the same number. Hence, the cube root of unity means that when a number is raised to the power 3, it gives the answer 1. The values of cube roots of unity are. Here, one root is a real number and the other two are the imaginary or complex numbers. Hence, we represent the imaginary numbers as $\omega $ and ${\omega ^2}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

