
Points \[{\text{(1,1),( - 2,7),(3, - 3)}}\]
The vertices of the triangles are . The it’s area is
\[
A.)\;\;\;0{\text{ }}sq.{\text{ }}unit \\
B.)\;\;\;2{\text{ }}sq.{\text{ }}unit \\
C.)\;\;\;24{\text{ }}sq.{\text{ }}unit \\
D.)\;\;\;12{\text{ }}sq.{\text{ }}unit \\
\]
Answer
594k+ views
Hint: As all the vertices are mentioned \[{\text{(1,1),( - 2,7),(3, - 3)}}\] so using the determinant method to find the area of the triangle which is\[\left| {\dfrac{{\text{1}}}{{\text{2}}}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_{\text{1}}}}&{{{\text{y}}_{\text{1}}}}&{\text{1}} \\
{{{\text{x}}_{\text{2}}}}&{{{\text{y}}_{\text{2}}}}&{\text{1}} \\
{{{\text{x}}_{\text{3}}}}&{{{\text{y}}_{\text{3}}}}&{\text{1}}
\end{array}} \right|} \right|\], we simply put the values and the answer will be obtained.
Complete step-by-step answer:
So we can use the above provided info as ,
Just we need to substitute the values of the vertices \[{\text{(1,1),( - 2,7),(3, - 3)}}\] in the determinant given as \[\left| {\dfrac{{\text{1}}}{{\text{2}}}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_{\text{1}}}}&{{{\text{y}}_{\text{1}}}}&{\text{1}} \\
{{{\text{x}}_{\text{2}}}}&{{{\text{y}}_{\text{2}}}}&{\text{1}} \\
{{{\text{x}}_{\text{3}}}}&{{{\text{y}}_{\text{3}}}}&{\text{1}}
\end{array}} \right|} \right|\]
And it can be simplified to and solved further as
\[
\Rightarrow \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
1&{\text{1}}&{\text{1}} \\
{{\text{ - 2}}}&{\text{7}}&{\text{1}} \\
3&{ - 3}&{\text{1}}
\end{array}} \right|} \right| \\
\Rightarrow \left| {\dfrac{1}{2}[1(7 - ( - 3)) - 1( - 2 - 3) + 1(6 - 21)]} \right| \\
\Rightarrow \left| {\dfrac{1}{2}[10 + 5 - 15]} \right| \\
\Rightarrow 0sq.unit \\
\]
Hence , 0 sq. unit is our answer and so option (a) is the required answer.
Note: Triangle : A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted. And also if the area of the triangle is zero then it states that all the points are collinear.
And also if in 3-D we need to find the area of triangle than it’s formula is given as \[\left| {\dfrac{{\text{1}}}{{\text{2}}}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_{\text{1}}}}&{{{\text{y}}_{\text{1}}}}&{{{\text{z}}_{\text{1}}}} \\
{{{\text{x}}_{\text{2}}}}&{{{\text{y}}_{\text{2}}}}&{{{\text{z}}_{\text{2}}}} \\
{{{\text{x}}_{\text{3}}}}&{{{\text{y}}_{\text{3}}}}&{{{\text{z}}_{\text{3}}}}
\end{array}} \right|} \right|\] for the vertices \[({x_{\text{1}}}{\text{,}}{{\text{y}}_{\text{1}}},{z_{\text{1}}}),({x_2}{\text{,}}{{\text{y}}_2},{z_2}),({x_3}{\text{,}}{{\text{y}}_3},{z_3})\]
{{{\text{x}}_{\text{1}}}}&{{{\text{y}}_{\text{1}}}}&{\text{1}} \\
{{{\text{x}}_{\text{2}}}}&{{{\text{y}}_{\text{2}}}}&{\text{1}} \\
{{{\text{x}}_{\text{3}}}}&{{{\text{y}}_{\text{3}}}}&{\text{1}}
\end{array}} \right|} \right|\], we simply put the values and the answer will be obtained.
Complete step-by-step answer:
So we can use the above provided info as ,
Just we need to substitute the values of the vertices \[{\text{(1,1),( - 2,7),(3, - 3)}}\] in the determinant given as \[\left| {\dfrac{{\text{1}}}{{\text{2}}}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_{\text{1}}}}&{{{\text{y}}_{\text{1}}}}&{\text{1}} \\
{{{\text{x}}_{\text{2}}}}&{{{\text{y}}_{\text{2}}}}&{\text{1}} \\
{{{\text{x}}_{\text{3}}}}&{{{\text{y}}_{\text{3}}}}&{\text{1}}
\end{array}} \right|} \right|\]
And it can be simplified to and solved further as
\[
\Rightarrow \left| {\dfrac{1}{2}\left| {\begin{array}{*{20}{c}}
1&{\text{1}}&{\text{1}} \\
{{\text{ - 2}}}&{\text{7}}&{\text{1}} \\
3&{ - 3}&{\text{1}}
\end{array}} \right|} \right| \\
\Rightarrow \left| {\dfrac{1}{2}[1(7 - ( - 3)) - 1( - 2 - 3) + 1(6 - 21)]} \right| \\
\Rightarrow \left| {\dfrac{1}{2}[10 + 5 - 15]} \right| \\
\Rightarrow 0sq.unit \\
\]
Hence , 0 sq. unit is our answer and so option (a) is the required answer.
Note: Triangle : A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices A, B, and C is denoted. And also if the area of the triangle is zero then it states that all the points are collinear.
And also if in 3-D we need to find the area of triangle than it’s formula is given as \[\left| {\dfrac{{\text{1}}}{{\text{2}}}\left| {\begin{array}{*{20}{c}}
{{{\text{x}}_{\text{1}}}}&{{{\text{y}}_{\text{1}}}}&{{{\text{z}}_{\text{1}}}} \\
{{{\text{x}}_{\text{2}}}}&{{{\text{y}}_{\text{2}}}}&{{{\text{z}}_{\text{2}}}} \\
{{{\text{x}}_{\text{3}}}}&{{{\text{y}}_{\text{3}}}}&{{{\text{z}}_{\text{3}}}}
\end{array}} \right|} \right|\] for the vertices \[({x_{\text{1}}}{\text{,}}{{\text{y}}_{\text{1}}},{z_{\text{1}}}),({x_2}{\text{,}}{{\text{y}}_2},{z_2}),({x_3}{\text{,}}{{\text{y}}_3},{z_3})\]
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

