
Point P(x, y) satisfying the equation ${{\sin }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}(2xy)=\pi /2$ lies on
1) The bisector of the first and third quadrant.
2) The bisector of the second and fourth quadrant.
3)The rectangle formed by the lines x=$\pm $1 and y=$\pm $1
4)A unit circle with centre at the origin
Answer
557.4k+ views
Hint: Convert the ${{\cos }^{-1}}y$ into the sine form and then use the formula ${{\sin }^{-1}}+{{\cos }^{-1}}x=\pi /2$
Simplify all the options given in the question
(1)The bisector of the first and third quadrant.
The line is bisecting and passing through first and third quadrant
$\Rightarrow $ x=y
(2)The bisector of the second and fourth quadrant.
The line is bisecting and passing through second and fourth quadrant
$\Rightarrow $x=-y
(3)The rectangle formed by the lines x=$\pm $1 and y=$\pm $1
(4) A unit circle with centre at the origin
The equation for this circle is ${{x}^{2}}+{{y}^{2}}=1$
Formula Used:
$\begin{align}
& \cos \theta =Base/Hypotenuse \\
& \sin \theta =Perpendicular/Hypotenuse \\
& {{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}[xy+\sqrt{1-y}\sqrt{1-{{x}^{2}}}] \\
\end{align}$
${{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi /2$
Complete step-by-step answer:
${{\sin }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}(2xy)=\pi /2$ (1)
Convert the ${{\cos }^{-1}}y$ into the sine form
That is,
Let ${{\cos }^{-1}}y$ = $\theta $ in triangle ABC
{ $\angle ACB=\theta $}
$\Rightarrow $ cos $\theta $=y = Base/Hypotenuse
$\Rightarrow $Base=y
$\Rightarrow $Hypotenuse=1
Applying the Pythagoras theorem
Hypotenuse$^{2}$ =Base$^{2}$ + Perpendicular$^{2}$
$\Rightarrow $1$^{2}$ = y$^{2}$ + Perpendicular$^{2}$
$\Rightarrow $ Perpendicular$^{2}$ =1$^{2}$ - y$^{2}$
Taking square root on both sides
We get,
Perpendicular = $\sqrt{1-{{y}^{2}}}$
$\Rightarrow $sin$\theta $= Perpendicular/Hypotenuse
= $\sqrt{1-{{y}^{2}}}$
Now,
Put the value of ${{\cos }^{-1}}y$ in terms of sine in equation (1)
$\begin{align}
& {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{y}^{2}}}+{{\cos }^{-1}}2xy=\pi /2 \\
& \\
\end{align}$ (2)
Use the formula ${{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}[xy+\sqrt{1-y}\sqrt{1-{{x}^{2}}}]$
Here y= $\sqrt{1-{{y}^{2}}}$
$\Rightarrow $${{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{y}^{2}}}={{\sin }^{-1}}[x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}]$
Put in equation (2)
${{\sin }^{-1}}[x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}]+{{\cos }^{-1}}2xy=\pi /2$
Now,
We know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi /2$
$\Rightarrow $\[x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}=2xy\]
\[\begin{align}
& \Rightarrow \sqrt{1-{{y}^{2}}}\sqrt{1-{{x}^{2}}}=2xy-xy \\
& \Rightarrow \sqrt{1-{{y}^{2}}}\sqrt{1-{{x}^{2}}}=xy \\
\end{align}\]
Squaring on both sides
We get
\[\begin{align}
& (1-{{y}^{2}})(1-{{x}^{2}})={{x}^{2}}{{y}^{2}} \\
& \Rightarrow 1-{{y}^{2}}-{{x}^{2}}+{{x}^{2}}{{y}^{2}}={{x}^{2}}{{y}^{2}} \\
& \Rightarrow 1-{{y}^{2}}-{{x}^{2}}={{x}^{2}}{{y}^{2}}-{{x}^{2}}{{y}^{2}} \\
& \Rightarrow 1-{{y}^{2}}-{{x}^{2}}=0 \\
& \Rightarrow {{y}^{2}}+{{x}^{2}}=1 \\
\end{align}\]
Hence the right option is (4) that is A unit circle with centre at the origin.
Additional information:
The inverse trigonometric functions are also known as the anti trigonometric functions or sometimes called arcus functions or cyclometric functions.
The formula list is given below for reference to solve the problems.
\[\begin{align}
& si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\text{ }x\in \left[ -1,\text{ }1 \right] \\
& ta{{n}^{-1}}x\text{ }+\text{ }co{{t}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\text{ }x\in R \\
& se{{c}^{-1}}x\text{ }+\text{ }cose{{c}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\left| x \right|\text{ }\ge \text{ }1 \\
\end{align}\]
Note: The knowledge about the trigonometric functions as well as inverse trigonometric functions and their relations is important for students to answer such questions.
Simplify all the options given in the question
(1)The bisector of the first and third quadrant.
The line is bisecting and passing through first and third quadrant
$\Rightarrow $ x=y
(2)The bisector of the second and fourth quadrant.
The line is bisecting and passing through second and fourth quadrant
$\Rightarrow $x=-y
(3)The rectangle formed by the lines x=$\pm $1 and y=$\pm $1
(4) A unit circle with centre at the origin
The equation for this circle is ${{x}^{2}}+{{y}^{2}}=1$
Formula Used:
$\begin{align}
& \cos \theta =Base/Hypotenuse \\
& \sin \theta =Perpendicular/Hypotenuse \\
& {{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}[xy+\sqrt{1-y}\sqrt{1-{{x}^{2}}}] \\
\end{align}$
${{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi /2$
Complete step-by-step answer:
${{\sin }^{-1}}x+{{\cos }^{-1}}y+{{\cos }^{-1}}(2xy)=\pi /2$ (1)
Convert the ${{\cos }^{-1}}y$ into the sine form
That is,
Let ${{\cos }^{-1}}y$ = $\theta $ in triangle ABC
{ $\angle ACB=\theta $}
$\Rightarrow $ cos $\theta $=y = Base/Hypotenuse
$\Rightarrow $Base=y
$\Rightarrow $Hypotenuse=1
Applying the Pythagoras theorem
Hypotenuse$^{2}$ =Base$^{2}$ + Perpendicular$^{2}$
$\Rightarrow $1$^{2}$ = y$^{2}$ + Perpendicular$^{2}$
$\Rightarrow $ Perpendicular$^{2}$ =1$^{2}$ - y$^{2}$
Taking square root on both sides
We get,
Perpendicular = $\sqrt{1-{{y}^{2}}}$
$\Rightarrow $sin$\theta $= Perpendicular/Hypotenuse
= $\sqrt{1-{{y}^{2}}}$
Now,
Put the value of ${{\cos }^{-1}}y$ in terms of sine in equation (1)
$\begin{align}
& {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{y}^{2}}}+{{\cos }^{-1}}2xy=\pi /2 \\
& \\
\end{align}$ (2)
Use the formula ${{\sin }^{-1}}x+{{\sin }^{-1}}y={{\sin }^{-1}}[xy+\sqrt{1-y}\sqrt{1-{{x}^{2}}}]$
Here y= $\sqrt{1-{{y}^{2}}}$
$\Rightarrow $${{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{1-{{y}^{2}}}={{\sin }^{-1}}[x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}]$
Put in equation (2)
${{\sin }^{-1}}[x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}]+{{\cos }^{-1}}2xy=\pi /2$
Now,
We know that ${{\sin }^{-1}}x+{{\cos }^{-1}}x=\pi /2$
$\Rightarrow $\[x\sqrt{1-{{y}^{2}}}+y\sqrt{1-{{x}^{2}}}=2xy\]
\[\begin{align}
& \Rightarrow \sqrt{1-{{y}^{2}}}\sqrt{1-{{x}^{2}}}=2xy-xy \\
& \Rightarrow \sqrt{1-{{y}^{2}}}\sqrt{1-{{x}^{2}}}=xy \\
\end{align}\]
Squaring on both sides
We get
\[\begin{align}
& (1-{{y}^{2}})(1-{{x}^{2}})={{x}^{2}}{{y}^{2}} \\
& \Rightarrow 1-{{y}^{2}}-{{x}^{2}}+{{x}^{2}}{{y}^{2}}={{x}^{2}}{{y}^{2}} \\
& \Rightarrow 1-{{y}^{2}}-{{x}^{2}}={{x}^{2}}{{y}^{2}}-{{x}^{2}}{{y}^{2}} \\
& \Rightarrow 1-{{y}^{2}}-{{x}^{2}}=0 \\
& \Rightarrow {{y}^{2}}+{{x}^{2}}=1 \\
\end{align}\]
Hence the right option is (4) that is A unit circle with centre at the origin.
Additional information:
The inverse trigonometric functions are also known as the anti trigonometric functions or sometimes called arcus functions or cyclometric functions.
The formula list is given below for reference to solve the problems.
\[\begin{align}
& si{{n}^{-1}}x\text{ }+\text{ }co{{s}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\text{ }x\in \left[ -1,\text{ }1 \right] \\
& ta{{n}^{-1}}x\text{ }+\text{ }co{{t}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\text{ }x\in R \\
& se{{c}^{-1}}x\text{ }+\text{ }cose{{c}^{-1}}x\text{ }=\text{ }\pi /2\text{ },\left| x \right|\text{ }\ge \text{ }1 \\
\end{align}\]
Note: The knowledge about the trigonometric functions as well as inverse trigonometric functions and their relations is important for students to answer such questions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

